skip to main content
10.1145/3544549.3585716acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
Work in Progress

Towards User-Aware VR Learning Environments: Combining Brain-Computer Interfaces with Virtual Reality for Mental State Decoding

Authors Info & Claims
Published:19 April 2023Publication History

ABSTRACT

User-aware adaptive systems can greatly benefit from brain-computer interface (BCI) technologies. BCIs allow continuous monitoring of users’ mental states and tailoring of the system to their individual skills and needs. We conducted a feasibility study integrating a BCI using functional near-infrared spectroscopy (fNIRS) into a virtual reality (VR) environment for realistic industrial learning scenarios. Using a fNIRS-based BCI allowed us to a) identify learning progress of individuals based on their working memory load across multiple learning sessions and b) investigate the underlying brain patterns. Our results showed a non-linear relationship between task difficulty and brain responses in the prefrontal cortex (PFC). Finally, we were able to draw four major conclusions regarding architecture components and vital research perspectives, to progress towards a vision of user-aware adaptive system design.

Skip Supplemental Material Section

Supplemental Material

3544549.3585716-talk-video.mp4

mp4

71.2 MB

3544549.3585716-video-preview.mp4

mp4

14.5 MB

References

  1. Rumaisa Abu Hasan, Shahida Sulaiman, Nur Nabila Ashykin, Mohd Nasir Abdullah, Yasir Hafeez, and Syed Saad Azhar Ali. 2021. Workplace mental state monitoring during VR-based training for offshore environment. Sensors 21, 14 (2021), 4885.Google ScholarGoogle ScholarCross RefCross Ref
  2. P Aricò, G Borghini, G Di Flumeri, A Colosimo, S Pozzi, and F Babiloni. 2016. A passive brain–computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks. Progress in brain research 228 (2016), 295–328.Google ScholarGoogle ScholarCross RefCross Ref
  3. Hasan Ayaz, Patricia A Shewokis, Scott Bunce, Kurtulus Izzetoglu, Ben Willems, and Banu Onaral. 2012. Optical brain monitoring for operator training and mental workload assessment. Neuroimage 59, 1 (2012), 36–47.Google ScholarGoogle ScholarCross RefCross Ref
  4. Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1 (2015), 1–48. https://doi.org/10.18637/jss.v067.i01Google ScholarGoogle ScholarCross RefCross Ref
  5. Benjamin Blankertz, Laura Acqualagna, Sven Dähne, Stefan Haufe, Matthias Schultze-Kraft, Irene Sturm, Marija Ušćumlic, Markus A Wenzel, Gabriel Curio, and Klaus-Robert Müller. 2016. The Berlin brain-computer interface: progress beyond communication and control. Frontiers in neuroscience 10 (2016), 530.Google ScholarGoogle Scholar
  6. Matthias Bues, Tobias Schultze, and Benjamin Wingert. 2018. Konzeption und Implementierung einer VR-Lernumgebung für technische Dienstleistungen. In Digitalisierung in der Aus- und Weiterbildung: Virtual und Augmented Reality für Industrie 4.0, Oliver Thomas, Dirk Metzger, and Helmut Niegemann (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 113–123. https://doi.org/10.1007/978-3-662-56551-3_8Google ScholarGoogle ScholarCross RefCross Ref
  7. Thomas Carlson, Erin Goddard, David M Kaplan, Colin Klein, and J Brendan Ritchie. 2018. Ghosts in machine learning for cognitive neuroscience: Moving from data to theory. NeuroImage 180 (2018), 88–100.Google ScholarGoogle ScholarCross RefCross Ref
  8. Guy Cheron, Géraldine Petit, Julian Cheron, Axelle Leroy, Anita Cebolla, Carlos Cevallos, Mathieu Petieau, Thomas Hoellinger, David Zarka, Anne-Marie Clarinval, 2016. Brain oscillations in sport: toward EEG biomarkers of performance. Frontiers in psychology 7 (2016), 246.Google ScholarGoogle Scholar
  9. Jong-Kwan Choi, Jae-Myoung Kim, Gunpil Hwang, Jaehyeok Yang, Min-Gyu Choi, and Hyeon-Min Bae. 2016. Time-divided spread-spectrum code-based 400 fW-detectable multichannel fNIRS IC for portable functional brain imaging. IEEE Journal of Solid-State Circuits 51, 2 (2016), 484–495.Google ScholarGoogle ScholarCross RefCross Ref
  10. Caterina Cinel, Davide Valeriani, and Riccardo Poli. 2019. Neurotechnologies for human cognitive augmentation: current state of the art and future prospects. Frontiers in human neuroscience 13 (2019), 13.Google ScholarGoogle Scholar
  11. Geoff Cumming and Sue Finch. 2005. Inference by eye: confidence intervals and how to read pictures of data.American psychologist 60, 2 (2005), 170.Google ScholarGoogle Scholar
  12. Frédéric Dehais, Alban Duprès, Sarah Blum, Nicolas Drougard, Sébastien Scannella, Raphaëlle N Roy, and Fabien Lotte. 2019. Monitoring pilot’s mental workload using ERPs and spectral power with a six-dry-electrode EEG system in real flight conditions. Sensors 19, 6 (2019), 1324.Google ScholarGoogle ScholarCross RefCross Ref
  13. Gautier Durantin, J-F Gagnon, Sébastien Tremblay, and Frédéric Dehais. 2014. Using near infrared spectroscopy and heart rate variability to detect mental overload. Behavioural brain research 259 (2014), 16–23.Google ScholarGoogle Scholar
  14. Stephen H Fairclough. 2009. Fundamentals of physiological computing. Interacting with computers 21, 1-2 (2009), 133–145.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Marco Ferrari and Valentina Quaresima. 2012. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63, 2 (2012), 921–935.Google ScholarGoogle ScholarCross RefCross Ref
  16. Frank A Fishburn, Ruth S Ludlum, Chandan J Vaidya, and Andrei V Medvedev. 2019. Temporal derivative distribution repair (TDDR): a motion correction method for fNIRS. Neuroimage 184 (2019), 171–179.Google ScholarGoogle ScholarCross RefCross Ref
  17. Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier, Christian Brodbeck, Roman Goj, Mainak Jas, Teon Brooks, Lauri Parkkonen, and Matti S. Hämäläinen. 2013. MEG and EEG Data Analysis with MNE-Python. Frontiers in Neuroscience 7, 267 (2013), 1–13. https://doi.org/10.3389/fnins.2013.00267Google ScholarGoogle ScholarCross RefCross Ref
  18. Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology. Vol. 52. Elsevier, Amsterdam, Netherlands, 139–183.Google ScholarGoogle Scholar
  19. Stefan Haufe, Jeong-Woo Kim, Il-Hwa Kim, Andreas Sonnleitner, Michael Schrauf, Gabriel Curio, and Benjamin Blankertz. 2014. Electrophysiology-based detection of emergency braking intention in real-world driving. Journal of neural engineering 11, 5 (2014), 056011.Google ScholarGoogle ScholarCross RefCross Ref
  20. Stefan Haufe, Frank Meinecke, Kai Görgen, Sven Dähne, John-Dylan Haynes, Benjamin Blankertz, and Felix Bießmann. 2014. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87 (2014), 96–110.Google ScholarGoogle ScholarCross RefCross Ref
  21. Christian Herff, Dominic Heger, Ole Fortmann, Johannes Hennrich, Felix Putze, and Tanja Schultz. 2014. Mental workload during n-back task—quantified in the prefrontal cortex using fNIRS. Frontiers in human neuroscience 7 (2014), 935.Google ScholarGoogle Scholar
  22. Valentin Holzwarth, Johannes Schneider, Joshua Handali, Joy Gisler, Christian Hirt, Andreas Kunz, and Jan vom Brocke. 2021. Towards estimating affective states in virtual reality based on behavioral data. Virtual reality 25, 4 (2021), 1139–1152.Google ScholarGoogle Scholar
  23. Alicia Howell-Munson, Emily Doherty, Peter Gavriel, Claire Nicolas, Adam Norton, Rodica Neamtu, Holly Yanco, Yi-Ning Wu, and Erin T Solovey. 2022. Towards Brain Metrics for Improving Multi-Agent Adaptive Human-Robot Collaboration: A Preliminary Study. In 2022 Symposium on Human-Computer Interaction for Work. Association for Computing Machinery, New York, NY, United States, 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Dongjin Huang, Xianglong Wang, Jinhua Liu, Jinyao Li, and Wen Tang. 2022. Virtual reality safety training using deep EEG-net and physiology data. The visual computer 38, 4 (2022), 1195–1207.Google ScholarGoogle Scholar
  25. Nikolaos Kaklanis, Pradipta Biswas, Yehya Mohamad, Mari Feli Gonzalez, Matthias Peissner, Patrick Langdon, Dimitrios Tzovaras, and Christopher Jung. 2016. Towards standardisation of user models for simulation and adaptation purposes. Universal Access in the Information Society 15 (2016), 21–48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Roy PC Kessels, Martine JE Van Zandvoort, Albert Postma, L Jaap Kappelle, and Edward HF De Haan. 2000. The Corsi block-tapping task: standardization and normative data. Applied neuropsychology 7, 4 (2000), 252–258.Google ScholarGoogle Scholar
  27. Jean-Rémi King, Laura Gwilliams, Chris Holdgraf, Jona Sassenhagen, Alexandre Barachant, Denis Alexander Engemann, Eric Larson, and Alexandre Gramfort. 2017. Encoding and Decoding Neuronal Dynamics: Methodological Framework to Uncover the Algorithms of Cognition. HAL open science hal-01848442 (2017), 1–19.Google ScholarGoogle Scholar
  28. Marius Klug, Sein Jeung, Anna Wunderlich, Lukas Gehrke, Janna Protzak, Zakaria Djebbara, Andreas Argubi-Wollesen, Bettina Wollesen, and Klaus Gramann. 2022. The BeMoBIL Pipeline for automated analyses of multimodal mobile brain and body imaging data. bioRxiv 1, 1 (2022), 2022–09.Google ScholarGoogle Scholar
  29. Christian Kothe, David Medine, Chadwick Boulay, Matthew Grivich, and Tristan Stenner. 2019. Labstreaminglayer. Labstreaminglayer. Retrieved January 04, 2023 from https://labstreaminglayer.readthedocs.io/index.htmlGoogle ScholarGoogle Scholar
  30. Wei Lun Lim, Yisi Liu, Salem Chandrasekaran Harihara Subramaniam, Serene Hui Ping Liew, Gopala Krishnan, Olga Sourina, Dimitrios Konovessis, Hock Eng Ang, and Lipo Wang. 2018. EEG-based mental workload and stress monitoring of crew members in maritime virtual simulator. In Transactions on Computational Science XXXII. Springer, Berlin, Heidelberg, 15–28.Google ScholarGoogle Scholar
  31. Tania Llana, Cristina Fernandez-Baizan, Magdalena Mendez-Lopez, Camino Fidalgo, and Marta Mendez. 2022. Functional near-infrared spectroscopy in the neuropsychological assessment of spatial memory: A systematic review. Acta Psychologica 224 (2022), 103525.Google ScholarGoogle ScholarCross RefCross Ref
  32. Fabien Lotte, Josef Faller, Christoph Guger, Yann Renard, Gert Pfurtscheller, Anatole Lécuyer, and Robert Leeb. 2012. Combining BCI with virtual reality: towards new applications and improved BCI. In Towards practical brain-computer interfaces. Springer, Berlin/Heidelberg, Germany, 197–220.Google ScholarGoogle Scholar
  33. Robert Luke, Eric D Larson, Maureen J Shader, Hamish Innes-Brown, Lindsey Van Yper, Adrian KC Lee, Paul F Sowman, and David McAlpine. 2021. Analysis methods for measuring passive auditory fNIRS responses generated by a block-design paradigm. Neurophotonics 8, 2 (2021), 025008.Google ScholarGoogle ScholarCross RefCross Ref
  34. J McAfoose and BT Baune. 2009. Exploring visual–spatial working memory: A critical review of concepts and models. Neuropsychology review 19 (2009), 130–142.Google ScholarGoogle Scholar
  35. Ryan McKendrick and Amanda Harwood. 2019. Cognitive workload and workload transitions elicit curvilinear hemodynamics during spatial working memory. Frontiers in Human Neuroscience 13 (2019), 405.Google ScholarGoogle ScholarCross RefCross Ref
  36. Kim Mens, Rafael Capilla, Nicolás Cardozo, and Bruno Dumas. 2016. A taxonomy of context-aware software variability approaches. In Companion Proceedings of the 15th International Conference on Modularity. Association for Computing Machinery, New York, NY, United States, 119–124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. George A Miller. 1956. The magical number seven, plus or minus two: Some limits on our capacity for processing information.Psychological review 63, 2 (1956), 81.Google ScholarGoogle Scholar
  38. Guiomar Niso, Elena Romero, Jeremy T Moreau, Alvaro Araujo, and Laurens R Krol. 2023. Wireless EEG: A survey of systems and studies. NeuroImage 269 (2023), 119774.Google ScholarGoogle ScholarCross RefCross Ref
  39. François Osiurak, Jordan Navarro, and Emanuelle Reynaud. 2018. How our cognition shapes and is shaped by technology: A common framework for understanding human tool-use interactions in the past, present, and future. Frontiers in psychology 9 (2018), 293.Google ScholarGoogle Scholar
  40. Evan M Peck, Daniel Afergan, Beste F Yuksel, Francine Lalooses, and Robert JK Jacob. 2014. Using fNIRS to measure mental workload in the real world. In Advances in physiological computing. Springer, Berlin/Heidelberg, Germany, 117–139.Google ScholarGoogle Scholar
  41. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12 (2011), 2825–2830.Google ScholarGoogle Scholar
  42. Stéphanie Philippe, Alexis D Souchet, Petros Lameras, Panagiotis Petridis, Julien Caporal, Gildas Coldeboeuf, and Hadrien Duzan. 2020. Multimodal teaching, learning and training in virtual reality: a review and case study. Virtual Reality & Intelligent Hardware 2, 5 (2020), 421–442.Google ScholarGoogle ScholarCross RefCross Ref
  43. Maria Piñeyro Salvidegoitia, Nadine Jacobsen, Anna-Katharina R Bauer, Benjamin Griffiths, Simon Hanslmayr, and Stefan Debener. 2019. Out and about: Subsequent memory effect captured in a natural outdoor environment with smartphone EEG. Psychophysiology 56, 5 (2019), e13331.Google ScholarGoogle ScholarCross RefCross Ref
  44. Paola Pinti, Clarisse Aichelburg, Sam Gilbert, Antonia Hamilton, Joy Hirsch, Paul Burgess, and Ilias Tachtsidis. 2018. A review on the use of wearable functional near-infrared spectroscopy in naturalistic environments. Japanese Psychological Research 60, 4 (2018), 347–373.Google ScholarGoogle ScholarCross RefCross Ref
  45. Kathrin Pollmann, Oilver Stefani, Amelie Bengsch, Matthias Peissner, and Mathias Vukelić. 2019. How to work in the car of the future? A neuroergonomical study assessing concentration, performance and workload based on subjective, behavioral and neurophysiological insights. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, United States, 1–14.Google ScholarGoogle Scholar
  46. Jos Prinsen, Ethel Pruss, Anita Vrins, Caterina Ceccato, and Maryam Alimardani. 2022. A Passive Brain-Computer Interface for Monitoring Engagement during Robot-Assisted Language Learning. In 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, IEEE, Prague, Czech Republic, 1967–1972.Google ScholarGoogle ScholarCross RefCross Ref
  47. Felix Putze, Christian Herff, Christoph Tremmel, Tanja Schultz, and Dean J Krusienski. 2019. Decoding mental workload in virtual environments: a fNIRS study using an immersive n-back task. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, IEEE, Berlin, Germany, 3103–3106.Google ScholarGoogle ScholarCross RefCross Ref
  48. Julian E Reiser, Edmund Wascher, Gerhard Rinkenauer, and Stefan Arnau. 2021. Cognitive-motor interference in the wild: Assessing the effects of movement complexity on task switching using mobile EEG. European Journal of Neuroscience 54, 12 (2021), 8175–8195.Google ScholarGoogle ScholarCross RefCross Ref
  49. Raphaëlle N Roy, Marcel F Hinss, Ludovic Darmet, Simon Ladouce, Emilie S Jahanpour, Bertille Somon, Xiaoqi Xu, Nicolas Drougard, Frédéric Dehais, and Fabien Lotte. 2022. Retrospective on the First Passive Brain-Computer Interface Competition on Cross-Session Workload Estimation. Frontiers in Neuroergonomics 3 (2022), 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  50. Richard M Ryan and Edward L Deci. 2000. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being.American psychologist 55, 1 (2000), 68.Google ScholarGoogle Scholar
  51. Yangming Shi, Yibo Zhu, Ranjana K Mehta, and Jing Du. 2020. A neurophysiological approach to assess training outcome under stress: A virtual reality experiment of industrial shutdown maintenance using Functional Near-Infrared Spectroscopy (fNIRS). Advanced Engineering Informatics 46 (2020), 101153.Google ScholarGoogle ScholarCross RefCross Ref
  52. Mojtaba Soltanlou, Maria A Sitnikova, Hans-Christoph Nuerk, and Thomas Dresler. 2018. Applications of functional near-infrared spectroscopy (fNIRS) in studying cognitive development: The case of mathematics and language. Frontiers in psychology 9 (2018), 277.Google ScholarGoogle Scholar
  53. Martin Spüler, Tanja Krumpe, Carina Walter, Christian Scharinger, Wolfgang Rosenstiel, and Peter Gerjets. 2017. Brain-computer interfaces for educational applications. Informational environments: Effects of use, effective designs 1 (2017), 177–201.Google ScholarGoogle Scholar
  54. Megan Strait and Matthias Scheutz. 2014. What we can and cannot (yet) do with functional near infrared spectroscopy. Frontiers in neuroscience 8 (2014), 117.Google ScholarGoogle Scholar
  55. Christoph Tremmel, Christian Herff, Tetsuya Sato, Krzysztof Rechowicz, Yusuke Yamani, and Dean J Krusienski. 2019. Estimating cognitive workload in an interactive virtual reality environment using EEG. Frontiers in human neuroscience 13 (2019), 401.Google ScholarGoogle Scholar
  56. Anirudh Unni, Klas Ihme, Meike Jipp, and Jochem W Rieger. 2017. Assessing the driver’s current level of working memory load with high density functional near-infrared spectroscopy: A realistic driving simulator study. Frontiers in human neuroscience 11 (2017), 167.Google ScholarGoogle Scholar
  57. Ross E Vanderwert and Charles A Nelson. 2014. The use of near-infrared spectroscopy in the study of typical and atypical development. Neuroimage 85 (2014), 264–271.Google ScholarGoogle ScholarCross RefCross Ref
  58. Kevin J Verdière, Raphaëlle N Roy, and Frédéric Dehais. 2018. Detecting pilot’s engagement using fNIRS connectivity features in an automated vs. manual landing scenario. Frontiers in human neuroscience 12 (2018), 6.Google ScholarGoogle Scholar
  59. Alexander von Lühmann, Antonio Ortega-Martinez, David A Boas, and Meryem Ayşe Yücel. 2020. Using the general linear model to improve performance in fNIRS single trial analysis and classification: a perspective. Frontiers in human neuroscience 14 (2020), 1–17.Google ScholarGoogle ScholarCross RefCross Ref
  60. Alexander von Lühmann, Yilei Zheng, Antonio Ortega-Martinez, Swathi Kiran, David C Somers, Alice Cronin-Golomb, Louis N Awad, Terry D Ellis, David A Boas, and Meryem A Yücel. 2021. Toward Neuroscience of the Everyday World (NEW) using functional near-infrared spectroscopy. Current opinion in biomedical engineering 18 (2021), 100272.Google ScholarGoogle Scholar
  61. Mathias Vukelić. 2021. Connecting Brain and Machine: The Mind Is the Next Frontier. Clinical Neurotechnology meets Artificial Intelligence: Philosophical, Ethical, Legal and Social Implications 1 (2021), 215–226.Google ScholarGoogle Scholar
  62. Mathias Vukelić, Katharina Lingelbach, Kathrin Pollmann, and Matthias Peissner. 2020. Oscillatory EEG Signatures of Affective Processes during Interaction with Adaptive Computer Systems. Brain Sciences 11, 1 (2020), 35.Google ScholarGoogle ScholarCross RefCross Ref
  63. Carina Walter, Wolfgang Rosenstiel, Martin Bogdan, Peter Gerjets, and Martin Spüler. 2017. Online EEG-based workload adaptation of an arithmetic learning environment. Frontiers in human neuroscience 11 (2017), 286.Google ScholarGoogle Scholar
  64. Mark S Young, Karel A Brookhuis, Christopher D Wickens, and Peter A Hancock. 2015. State of science: mental workload in ergonomics. Ergonomics 58, 1 (2015), 1–17.Google ScholarGoogle ScholarCross RefCross Ref
  65. Meryem A Yücel, Alexander v Lühmann, Felix Scholkmann, Judit Gervain, Ippeita Dan, Hasan Ayaz, David Boas, Robert J Cooper, Joseph Culver, Clare E Elwell, 2021. Best practices for fNIRS publications. Neurophotonics 8, 1 (2021), 012101.Google ScholarGoogle Scholar
  66. Thorsten O Zander and Christian Kothe. 2011. Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. Journal of neural engineering 8, 2 (2011), 025005.Google ScholarGoogle ScholarCross RefCross Ref
  67. Thorsten O Zander, Kunal Shetty, Romy Lorenz, Daniel R Leff, Laurens R Krol, Ara W Darzi, Klaus Gramann, and Guang-Zhong Yang. 2017. Automated task load detection with electroencephalography: towards passive brain–computer interfacing in robotic surgery. Journal of Medical Robotics Research 2, 01 (2017), 1750003.Google ScholarGoogle ScholarCross RefCross Ref
  68. Rob Zink, Borbála Hunyadi, Sabine Van Huffel, and Maarten De Vos. 2016. Mobile EEG on the bike: disentangling attentional and physical contributions to auditory attention tasks. Journal of neural engineering 13, 4 (2016), 046017.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Towards User-Aware VR Learning Environments: Combining Brain-Computer Interfaces with Virtual Reality for Mental State Decoding

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              CHI EA '23: Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems
              April 2023
              3914 pages
              ISBN:9781450394222
              DOI:10.1145/3544549

              Copyright © 2023 Owner/Author

              Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 19 April 2023

              Check for updates

              Qualifiers

              • Work in Progress
              • Research
              • Refereed limited

              Acceptance Rates

              Overall Acceptance Rate6,164of23,696submissions,26%

              Upcoming Conference

              CHI '24
              CHI Conference on Human Factors in Computing Systems
              May 11 - 16, 2024
              Honolulu , HI , USA
            • Article Metrics

              • Downloads (Last 12 months)309
              • Downloads (Last 6 weeks)31

              Other Metrics

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            Full Text

            View this article in Full Text.

            View Full Text

            HTML Format

            View this article in HTML Format .

            View HTML Format