skip to main content
10.1145/3544549.3585910acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
Work in Progress

BrainiBeats: A dual brain-computer interface for musical composition using inter-brain synchrony and emotional valence

Published:19 April 2023Publication History

ABSTRACT

A dual brain-computer interface (BCI) was developed to translate emotions and synchrony between two users into music. Using EEG signals of two individuals, the system generates live music note-by-note and controls musical parameters, such as pitch, intensity and interval. The users’ mean EEG amplitude determines the notes, and their emotional valence modulates the intensity (i.e. volume of music). Additionally, inter-brain synchrony is used to manipulate the interval between notes, with higher synchrony producing more pleasant music and lower synchrony producing less pleasant music. Further research is needed to test the system in an experimental setting, however, literature suggests that neurofeedback based on inter-brain synchrony and emotional valence could be used to promote positive aspects of group dynamics and mutual emotional understanding.

Skip Supplemental Material Section

Supplemental Material

3544549.3585910-talk-video.mp4

mp4

88.6 MB

References

  1. Samuel Aaron and Alan F Blackwell. 2013. From sonic Pi to overtone: creative musical experiences with domain-specific and functional languages. In Proceedings of the first ACM SIGPLAN workshop on Functional art, music, modeling & design. 35–46.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Michaël AS Acquadro, Marco Congedo, and Dirk De Riddeer. 2016. Music performance as an experimental approach to hyperscanning studies. Frontiers in human neuroscience 10 (2016), 242.Google ScholarGoogle Scholar
  3. Thomas G Arizmendi. 2011. Linking mechanisms: Emotional contagion, empathy, and imagery.Psychoanalytic Psychology 28, 3 (2011), 405.Google ScholarGoogle Scholar
  4. Hussain-Abdulah Arjmand, Jesper Hohagen, Bryan Paton, and Nikki S Rickard. 2017. Emotional Responses to Music: Shifts in Frontal Brain Asymmetry Mark Periods of Musical Change. Frontiers in Psychology 8 (2017).Google ScholarGoogle Scholar
  5. Caterina Ceccato, Ethel Pruss, Anita Vrins, and Jos Prinsen. 2023. BrainiBeats demo video. https://www.youtube.com/watch?v=Oh-JXN6_UIEGoogle ScholarGoogle Scholar
  6. Thibault Chabin, Damien Gabriel, Alexandre Comte, Emmanuel Haffen, Thierry Moulin, and Lionel Pazart. 2022. Interbrain emotional connection during music performances is driven by physical proximity and individual traits. Annals of the New York Academy of Sciences 1508, 1 (2022), 178–195.Google ScholarGoogle ScholarCross RefCross Ref
  7. Rubén Hinojosa Chapel. 2003. Realtime Algorithmic Music Systems From Fractals and Chaotic Functions: Toward an Active Musical Instrument.Google ScholarGoogle Scholar
  8. Laura K. Cirelli. 2018. How interpersonal synchrony facilitates early prosocial behavior.Current opinion in psychology 20 (2018), 35–39.Google ScholarGoogle Scholar
  9. James A Coan and John JB Allen. 2004. Frontal EEG asymmetry as a moderator and mediator of emotion. Biological psychology 67, 1-2 (2004), 7–50.Google ScholarGoogle Scholar
  10. William A Cunningham, Stacey D Espinet, Colin G DeYoung, and Philip David Zelazo. 2005. Attitudes to the right-and left: frontal ERP asymmetries associated with stimulus valence and processing goals. NeuroImage 28, 4 (2005), 827–834.Google ScholarGoogle ScholarCross RefCross Ref
  11. Artur Czeszumski, Sara Eustergerling, Anne Lang, David Menrath, Michael Gerstenberger, Susanne Schuberth, Felix Schreiber, Zadkiel Zuluaga Rendon, and Peter König. 2020. Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction. Frontiers in Human Neuroscience 14 (2020).Google ScholarGoogle Scholar
  12. Ian Daly, Duncan A. H. Williams, Alexis Kirke, James Weaver, Asad Malik, Faustina Hwang, Eduardo Reck Miranda, and Slawomir Jaroslaw Nasuto. 2016. Affective brain–computer music interfacing. Journal of Neural Engineering 13 (2016).Google ScholarGoogle Scholar
  13. Alexander P. Demos, Roger Chaffin, Kristen T. Begosh, Jennifer R. Daniels, and Kerry L. Marsh. 2012. Rocking to the beat: effects of music and partner’s movements on spontaneous interpersonal coordination.Journal of experimental psychology. General 141 1 (2012), 49–53.Google ScholarGoogle Scholar
  14. Guillaume Dumas, Jacqueline Nadel, Robert Soussignan, Jacques Martinerie, and Line Garnero. 2010. Inter-brain synchronization during social interaction. PloS one 5, 8 (2010), e12166.Google ScholarGoogle ScholarCross RefCross Ref
  15. Joel Eaton, Duncan A. H. Williams, and Eduardo Reck Miranda. 2015. The Space Between Us: Evaluating a multi-user affective brain-computer music interface.Google ScholarGoogle Scholar
  16. Hauke Egermann and Stephen McAdams. 2012. Empathy and emotional contagion as a link between recognized and felt emotions in music listening. Music Perception: An Interdisciplinary Journal 31, 2 (2012), 139–156.Google ScholarGoogle ScholarCross RefCross Ref
  17. Stefan K. Ehrlich, Kat Rose Agres, Cuntai Guan, and Gordon Cheng. 2019. A closed-loop, music-based brain-computer interface for emotion mediation. PLoS ONE 14 (2019).Google ScholarGoogle Scholar
  18. Walter J Freeman, Mark D Holmes, G Alexander West, and Sampsa Vanhatalo. 2006. Fine spatiotemporal structure of phase in human intracranial EEG. Clinical Neurophysiology 117, 6 (2006), 1228–1243.Google ScholarGoogle ScholarCross RefCross Ref
  19. Martin Gardner. 1978. Mathematical games: White and brown music, fractal curves and one-over-f fluctuations. Scientific american 238, 4 (1978), 16–32.Google ScholarGoogle Scholar
  20. Ihshan Gumilar, Ekansh Sareen, Reed Bell, Augustus Stone, Ashkan Hayati, Jingwen Mao, Amit Barde, Anubha Gupta, Arindam Dey, Gun Lee, 2021. A comparative study on inter-brain synchrony in real and virtual environments using hyperscanning. Computers & Graphics 94 (2021), 62–75.Google ScholarGoogle ScholarCross RefCross Ref
  21. Yasir Hafeez, Syed Saad Azhar Ali, Rumaisa Abu Hasan, Syed Hasan Adil, Muhammad Moinuddin, Mansoor Ebrahim, Muhamad Saiful Bahri Yusoff, Hafeezullah Amin, and Ubaid Al-Saggaf. 2021. Development of Enhanced Stimulus Content to Improve the Treatment Efficacy of EEG–Based Frontal Alpha Asymmetry Neurofeedback for Stress Mitigation. IEEE Access 9 (2021), 130638–130648.Google ScholarGoogle ScholarCross RefCross Ref
  22. Eddie Harmon-Jones. 2003. Early Career Award. Clarifying the emotive functions of asymmetrical frontal cortical activity.Psychophysiology 40 6 (2003), 838–48.Google ScholarGoogle Scholar
  23. Thilo Hinterberger and Gerold Baier. 2005. Parametric orchestral sonification of EEG in real time. IEEE MultiMedia 12, 2 (2005), 70–79.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Yinying Hu, Min Zhu, Yang Liu, Zixuan Wang, Xiaojun Cheng, Yafeng Pan, and Y. Hu. 2022. Musical Meter Induces Interbrain Synchronization during Interpersonal Coordination. eNeuro 9 (2022).Google ScholarGoogle Scholar
  25. Eva Istók, Elvira Brattico, Thomas Jacobsen, Kaisu Krohn, Mira Müller, and Mari Tervaniemi. 2009. Aesthetic responses to music: A questionnaire study. Musicae Scientiae 13, 2 (2009), 183–206.Google ScholarGoogle ScholarCross RefCross Ref
  26. Peter E. Keller, Giacomo Novembre, and Michael J. Hove. 2014. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination. Philosophical Transactions of the Royal Society B: Biological Sciences 369 (2014).Google ScholarGoogle Scholar
  27. Sivan Kinreich, Amir Djalovski, Lior Kraus, Yoram Louzoun, and Ruth Feldman. 2017. Brain-to-brain synchrony during naturalistic social interactions. Scientific reports 7, 1 (2017), 17060.Google ScholarGoogle Scholar
  28. Ivana Konvalinka, Markus Bauer, Carsten Stahlhut, Lars Kai Hansen, Andreas Roepstorff, and Chris D. Frith. 2014. Frontal alpha oscillations distinguish leaders from followers: Multivariate decoding of mutually interacting brains. NeuroImage 94 (2014), 79–88.Google ScholarGoogle ScholarCross RefCross Ref
  29. Claudia Krogmeier, Brandon S Coventry, and Christos Mousas. 2022. Affective Image Sequence Viewing in Virtual Reality Theater Environment: Frontal Alpha Asymmetry Responses From Mobile EEG. Frontiers in Virtual Reality (2022).Google ScholarGoogle Scholar
  30. Jean-Philippe Lachaux, Eugenio Rodriguez, Jacques Martinerie, and Francisco J. Varela. 1999. Measuring phase synchrony in brain signals. Human Brain Mapping 8 (1999).Google ScholarGoogle Scholar
  31. Sylvain Le Groux, Jonatas Manzolli, Paul FMJ Verschure, Marti Sanchez, Andre Luvizotto, Anna Mura, Aleksander Valjamae, Christoph Guger, Robert Prueckl, and Ulysses Bernardet. 2010. Disembodied and Collaborative Musical Interaction in the Multimodal Brain Orchestra.. In NIME. Citeseer, 309–314.Google ScholarGoogle Scholar
  32. Chih Yi Lin and Stone Cheng. 2012. Multi-theme analysis of music emotion similarity for jukebox application. 2012 International Conference on Audio, Language and Image Processing (2012), 241–246.Google ScholarGoogle ScholarCross RefCross Ref
  33. Ulman Lindenberger, Shu-Chen Li, Walter Gruber, and Viktor Müller. 2009. Brains swinging in concert: cortical phase synchronization while playing guitar. BMC neuroscience 10, 1 (2009), 1–12.Google ScholarGoogle Scholar
  34. Bill Manaris, Juan Romero, Penousal Machado, Dwight Krehbiel, Timothy Hirzel, Walter Pharr, and Robert B Davis. 2005. Zipf’s law, music classification, and aesthetics. Computer Music Journal 29, 1 (2005), 55–69.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Danielle Mathersul, Leanne M Williams, Patrick J Hopkinson, and Andrew H Kemp. 2008. Investigating models of affect: relationships among EEG alpha asymmetry, depression, and anxiety.Emotion 8, 4 (2008), 560.Google ScholarGoogle Scholar
  36. Rocco Mennella, Elisabetta Patron, and Daniela Palomba. 2017. Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety. Behaviour research and therapy 92 (2017), 32–40.Google ScholarGoogle Scholar
  37. Eduardo Reck Miranda and Julien Castet. 2014. Guide to Brain-Computer Music Interfacing. In Springer London.Google ScholarGoogle Scholar
  38. Evan Morgan, Hatice Gunes, and Nick Bryan-Kinns. 2015. Using affective and behavioural sensors to explore aspects of collaborative music making. International Journal of Human-Computer Studies 82 (2015), 31–47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tim R. Mullen, Alexander Khalil, Tomas E. Ward, John Rehner Iversen, Grace Leslie, Richard Warp, Matt Whitman, Victor Minces, Aaron McCoy, Alejandro Ojeda, Nima Bigdely-Shamlo, Mike Chi, and David Rosenboom. 2015. MindMusic: Playful and Social Installations at the Interface Between Music and the Brain.Google ScholarGoogle Scholar
  40. Viktor Müller, Johanna C. Sänger, and Ulman Lindenberger. 2018. Hyperbrain network properties of guitarists playing in quartet. Annals of the New York Academy of Sciences 1423 (2018).Google ScholarGoogle Scholar
  41. Anton Nijholt. 2015. Competing and collaborating brains: multi-brain computer interfacing. In Brain-Computer Interfaces. Springer, 313–335.Google ScholarGoogle Scholar
  42. Naoyuki Osaka, Takehiro Minamoto, Ken Yaoi, Miyuki Azuma, Yohko Minamoto Shimada, and Mariko Osaka. 2015. How two brains make one synchronized mind in the inferior frontal cortex: fNIRS-based hyperscanning during cooperative singing. Frontiers in psychology 6 (2015), 1811.Google ScholarGoogle Scholar
  43. Andreas Pinegger, Hannah Hiebel, Selina C Wriessnegger, and Gernot R Müller-Putz. 2017. Composing only by thought: Novel application of the P300 brain-computer interface. PloS one 12, 9 (2017), e0181584.Google ScholarGoogle ScholarCross RefCross Ref
  44. Tal-Chen Rabinowitch, Ian Cross, and Pamela Burnard. 2013. Long-term musical group interaction has a positive influence on empathy in children. Psychology of Music 41 (2013), 484 – 498.Google ScholarGoogle ScholarCross RefCross Ref
  45. Mauricio A Ramírez-Moreno, Jesús G Cruz-Garza, Akanksha Acharya, Girija Chatufale, Woody Witt, Dan Gelok, Guillermo Reza, and José L Contreras-Vidal. 2022. Brain-to-brain communication during musical improvisation: a performance case study. F1000Research 11, 989 (2022), 989.Google ScholarGoogle Scholar
  46. Johanna Sänger, Viktor Müller, and Ulman Lindenberger. 2012. Intra-and interbrain synchronization and network properties when playing guitar in duets. Frontiers in human neuroscience (2012), 312.Google ScholarGoogle Scholar
  47. E. Glenn Schellenberg, Kathleen A. Corrigall, Sebastian P Dys, and Tina Malti. 2015. Group Music Training and Children’s Prosocial Skills. PLoS ONE 10 (2015).Google ScholarGoogle Scholar
  48. Benjamin T. Schmidt, Avniel Singh Ghuman, and Theodore J. Huppert. 2014. Whole brain functional connectivity using phase locking measures of resting state magnetoencephalography. Frontiers in Neuroscience 8 (2014).Google ScholarGoogle Scholar
  49. Davide Valeriani and Ana Matran-Fernandez. 2018. Past and future of multi-mind brain–computer interfaces. Brain–Computer Interfaces Handbook (2018), 685–700.Google ScholarGoogle Scholar
  50. Satvik Venkatesh, Eduardo Reck Miranda, and Edward Braund. 2022. SSVEP-based brain–computer interface for music using a low-density EEG system. Assistive Technology (2022), 1–11.Google ScholarGoogle Scholar
  51. Jinn-Rong Wang and Shulan Hsieh. 2013. Neurofeedback training improves attention and working memory performance. Clinical Neurophysiology 124 (2013), 2406–2420.Google ScholarGoogle ScholarCross RefCross Ref
  52. Valtteri Wikström, Katri Saarikivi, Mari Falcon, Tommi Makkonen, Silja Martikainen, Vesa Putkinen, Benjamin Ultan Cowley, and Mari Tervaniemi. 2022. Inter-brain synchronization occurs without physical co-presence during cooperative online gaming. Neuropsychologia 174 (2022).Google ScholarGoogle Scholar
  53. Duncan A. H. Williams. 2019. Evaluating BCI for Musical Expression: Historical Approaches, Challenges and Benefits. In Brain Art.Google ScholarGoogle Scholar
  54. Dan Wu, Chaoyi Li, Jie Liu, Jing Lu, and Dezhong Yao. 2014. Scale-free brain ensemble modulated by phase synchronization. Journal of Zhejiang University SCIENCE C 15 (2014), 821–831.Google ScholarGoogle ScholarCross RefCross Ref
  55. Kyongsik Yun, Katsumi Watanabe, and Shinsuke Shimojo. 2012. Interpersonal body and neural synchronization as a marker of implicit social interaction. Scientific reports 2, 1 (2012), 1–8.Google ScholarGoogle Scholar
  56. Wei Zhou, Chenyang Qiu, and Guangyuan Liu. 2021. Efficient regulation of emotion by positive music based on EEG valence-arousal model. 2021 3rd International Conference on Image, Video and Signal Processing (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. BrainiBeats: A dual brain-computer interface for musical composition using inter-brain synchrony and emotional valence

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          CHI EA '23: Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems
          April 2023
          3914 pages
          ISBN:9781450394222
          DOI:10.1145/3544549

          Copyright © 2023 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 April 2023

          Check for updates

          Qualifiers

          • Work in Progress
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate6,164of23,696submissions,26%
        • Article Metrics

          • Downloads (Last 12 months)316
          • Downloads (Last 6 weeks)61

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text

        HTML Format

        View this article in HTML Format .

        View HTML Format