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ABSTRACT

High-throughput RTL simulation is critical for verifying today’s
highly complex SoCs. Recent research has explored accelerating
RTL simulation by leveraging event-driven approaches or partition-
ing heuristics to speed up simulation on a single stimulus. To further
accelerate throughput performance, industry-quality functional ver-
ification signoff must explore running multiple stimulus (i.e., batch
stimulus) simultaneously, either with directed tests or random in-
puts. In this paper, we propose RTLFlow, a GPU-accelerated RTL
simulation flow with batch stimulus. RTLflow first transpiles RTL
into CUDA kernels that each simulates a partition of the RTL simul-
taneously across multiple stimulus. It also leverages CUDA Graph
and pipeline scheduling for efficient runtime execution. Measuring
experimental results on a large industrial design (NVDLA) with
65536 stimulus, we show that RTLflow running on a single A6000
GPU can achieve a 40X runtime speed-up when compared to an
80-thread multi-core CPU baseline.
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1 INTRODUCTION

Register-transfer level (RTL) simulation is a critical part of design-
ing and verifying today’s highly complex SoCs, processors, and
accelerators [30, 31]. It is widely used in logic design, directed veri-
fication, constrained random verification, performance verification,
and debugging. For functional verification signoff [25], converg-
ing on coverage closure or avoiding bug escape from corner cases
typically requires many thousands of nightly regression tests on
the same Design-Under-Test (DUT) with different stimulus, which
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we refer to as stimulus-level parallelism. Different stimulus could
be different stimulus outputs from a constrained random testcase
generator, or perturbations to directed or random tests with dif-
ferent simulation knobs. As SoC complexity continues to grow,
industry-quality functional verification signoff requires a signifi-
cant and growing amount of compute resource to simulate RTL for
dozens of different units within an SoC across many thousands of
stimulus daily in the march to tapeout. Speeding up RTL simulation
throughput is critical for finding corner case bugs and achieving
coverage closure.
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Figure 1: RTLflow explores both stimulus- and structure-
level parallelisms to achieve high-performance RTL simula-
tion using GPU computing.

In recent years, we have seen increasing interest in accelerat-
ing RTL simulation in open-source tools, as shown in Figure 1.
Verilator [28] is the fastest open-source RTL simulator and has
been widely used in both industry and academic design projects.
It transpiles (source-to-source compile) RTL code into C++ code
based on RTL abstract syntax trees (ASTs). Recently, Verilator has
explored structure-level parallelism via RTL partitioning to sup-
port multi-threading. ESSENT [9] is a single-threaded simulator
which introduces an event-driven algorithm using conditional ex-
ecution to skip over unnecessary simulation work. ESSENT has
shown up to 2-10x speed-up over single-threaded Verilator but
the result does not scale well to large designs due to the lack of
multi-threading. CXXRTL is a Yosys [2] simulation back-end which
transpiles an internal representation (IR) generated by the Yosys
front-end to C++ simulation code. However, CXXRTL suffers from
extremely long compilation time on large designs and does not
have any multi-threading capability.

Prior research into accelerating RTL simulation has focused on
exploring strong scaling of a single stimulus, i.e., reducing time-to-
solution for simulating one DUT running one stimulus use case.
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Multi-stimulus simulation (multiple stimulus running on the same
DUT), or weak scaling, has been largely ignored in the research
because it is commonly done by running multiple instances of
single-stimulus simulation on a multi-core CPU system. Modern
GPUs support orders of magnitude more parallelism and much
higher memory bandwidth than multi-core CPU systems. The large
amount of data parallelism exhibited by multiple stimulus provides
a unique opportunity to improve the total simulation performance
by exploring stimulus-level parallelism on modern GPUs.

GPU-based RTL simulation has been investigated before, but
also limited to a single stimulus. For instance, [26] offloads the sim-
ulation workload to GPU by mapping each RTL process (a group of
simulation instructions) to a GPU kernel using one thread per warp.
This mapping, however, is not efficient since other threads within
a warp are not utilized. [10, 29, 32, 33] use GPU to accelerate gate-
level simulation. Nevertheless, gate-level simulation techniques are
not suitable for RTL simulation because of different objectives in
design flow.

In this paper, we propose RTLflow, a novel GPU acceleration flow
to speed up simultaneous multi-stimulus RTL simulation. As shown
in Figure 1, RTLflow explores both structure- and stimulus-level
parallelisms to achieve high-performance RTL simulation. To the
best of our knowledge, this is the first work of GPU-accelerated
RTL simulation with multiple stimulus. We summarize three key
contributions as follows:

e We introduce an automatic flow to transpile RTL Verilog simu-
lation code into CUDA equivalents that are optimized for both
structure- and stimulus-level parallelisms.

e We introduce a GPU-aware RTL graph partitioning algorithm
atop the modern CUDA Graph execution model to explore
structure-level parallelism while minimizing kernel call over-
heads over simulation cycles.

e We introduce a pipeline-based scheduling algorithm that further
explores inter-stimulus parallelism to enable efficient resource
utilization and computation overlap between CPU and GPU.
We have evaluated RTLflow on industrial designs and demon-

strated its promising performance compared to the state-of-the-art

Verilator [28] and ESSENT [9]. RTLflow on one A6000 GPU out-

performs Verilator and ESSENT on 80 CPU threads with up to

40x speed-up for a Nvidia Deep Learning Accelerator (NVDLA)
design [4] with 65536 stimulus. We have conducted detailed exper-
iments to demonstrate performance advantages of our pipeline
scheduling, GPU-aware partitioning algorithm, and our CUDA

Graph execution strategy that explore various degrees of parallelism

compared to the conventional methods. RTLflow is open-source

in [8] to benefit the community and inspire software simulation
research with heterogeneous parallelism.

2 BACKGROUND AND MOTIVATION

RTL simulation represents an input design as a directed graph,
namely RTL graph. Each node represents a logic element that con-
sumes a set of instructions. Each edge represents a wire to propagate
signals between nodes. Simulating a single cycle or a timestamp is
an evaluation of the graph which consumes inputs and propagates
them through logic elements to produce output values. A stimulus
provides a sequence of such inputs to drive simulation. Due to the
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growing chip sizes, modern RTL simulation requires running many
stimulus across different testbenches (e.g., function tests, random
tests) to validate the functionality of a design [31].

2.1 Conventional RTL Simulation Techniques

RTL simulation typically transpiles the given Verilog to C++ and
lets a compiler optimize the simulation code [2, 9, 28]. Listing 1
gives an example. The code wraps an input design dut with a cus-
tom simulator sim and simulates the waveforms cycle by cycle.
At each cycle iteration, we first set the inputs of dut using the
given stimulus file. Due to I/O and interaction with external test-
bench drivers, this step, set_inputs, typically runs on CPU and
becomes expensive when multiple stimulus exist. We then evaluate
the design based on the inputs at rising and falling clocks, @ and 1.
The iteration continues until the simulator emits a stop signal or
completes all simulation cycles.

Design dut;

Simulator sim(dut); / construct a simulator

size_t ¢ = 0;

while (! sim.stop and ¢ <= NUM_CYCLES) ({
dut.set_inputs(c); // set inputs for the cycle ¢
dut.set_clock (0); toggle clock to zero
sim. evaluate (); / evaluate the design
dut.set_clock (1); // toggle clock to one
sim.evaluate (); // evaluate the design
c=c+ 1; // move to the next cycle

}

Listing 1: A transpiled C++ loop for RTL simulation.

2.2 Event-Driven and Full-Cycle Simulations

Depending on how values are propagated within a stimulus, sim-
ulators can be event-driven or full-cycle. Event-driven simulators
dynamically schedule nodes to perform work only on the active por-
tion of the design. However, managing events requires expensive
control-flow costs, making it very difficult to parallelize. Full-cycle
simulators instead evaluate the value of every node at every cycle
by effectively inlining the entire design and transpiling RTL to
straight-line C++ simulation code. The code can be compiled to a
highly optimized simulator for the target design. For large designs,
simulators can partition the graph and evaluate partitioned sub-
graphs or tasks in parallel using a static or a dynamic load-balancing
scheduler.

2.3 Prior Works and their Limitations

Verilator is an open-source full-cycle simulator that has been widely
used in both academic and industrial projects due to its absolute
speed and robustness [28]. Verilator transpiles input simulation
sources (.v) to C++ via AST techniques, applies logical and func-
tional optimizations, and runs simulation for one stimulus on CPU.
To further improve the performance, Verilator adopts an iterative
partition algorithm [27] to group adjacent nodes into a set of atomic
macro tasks and models dependent macro tasks in a task graph that
runs in a multi-threaded environment using a static scheduling
algorithm. Verilator defines a parallelism parameter () to allow
fine-tuning the granularity of each macro task.

Despite improved performance, the speed benefit of Verilator
has been limited to strong scalability within a stimulus, and the
result has largely plateaued at 8-10 CPU cores [28]. To complete the
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whole simulation workload with batch stimulus, the de facto way is
to fork multiple Verilator processes and run independent stimulus
in parallel. This organization is simple but takes no advantage
of the large available data parallelism that resides in macro tasks
via simulating batch stimulus simultaneously. Specifically, GPU
computing provides potential for exploiting this available data
parallelism, incorporating high volumes of arithmetic operations.
The result can bring significant yet largely untapped performance
benefits to various RTL simulation applications, such as functional
verification signoff, or design space exploration tasks that count on
large numbers of stimulus to validate design choices.

On the other hand, ESSENT adopts an event-driven approach to
stop the simulation earlier whenever the activity becomes zero [9].
This approach, however, relies on sophisticated runtime controls
and conditionals that are difficult to scale beyond a single thread.
The speed-up of ESSENT thus becomes less significant on large
designs or simulation workloads with high activities. For example,
Verilator of 12 threads can be 5.5% faster than one thread [28], which
is far more than the speed-up report of ESSENT in [9]. Moreover,
the runtime of ESSENT calls for very frequent dynamic control
flow, making it hard to explore massive data parallelism among
batch stimulus in a uniform fashion.

2.4 Challenges with Batch Stimulus

As the RTL simulation workload continues to increase, in both
design size and data size, new simulators must leverage the power
of GPU computing to tackle many stimulus simultaneously. To this
end, we have identified three major challenges to overcome:

2.4.1 Lack of an Open Infrastructure to Break Language Barrier.
RTL speaks a different language from CUDA. It is impractical to
ask developers to rewrite every RTL simulation workload to CUDA.
While automatic transpilation tools from RTL to C++ are available
in the open-source domain [2, 28], they cannot be used out of the
box for GPUs. The distinct performance characteristics between
CPU and GPU require very different settings of memory and data
layout transpilation to make the most of GPU computing. An open-
source transpilation tool for this purpose will largely fill the gap
and inspire broad research efforts in software simulation.

24.2 Lack of a GPU-aware RTL Partitioning Algorithm. Existing
full-cycle RTL simulators [2, 28] all partition an RTL graph into
dependent subgraphs to support multi-threaded CPU parallelism.
These partitioning algorithms frequently count on hard-coded pa-
rameters to estimate the cost of clustering nodes in terms of CPU
instructions. Such an estimate, however, is not reflective of what
will happen in a real GPU-based simulation for batch stimulus. For
instance, depending on how we schedule batch stimulus to run on a
GPU, the generated simulation code (CUDA and C++) and its mem-
ory layout can change dramatically after compiler optimization
(e.g., nvec). We need a GPU-aware partitioning algorithm that can
perform estimates in real operating conditions. Furthermore, we
should notice that partitioned RTL graphs can result in a non-trivial
topology of GPU tasks (e.g., kernel, memory copy, operation depen-
dency). As a full-cycle simulator can evaluate many thousands or
millions of cycles, launching these dependent GPU tasks can incur
significant runtime overheads, such as scheduling streams/events
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and invoking kernels, that outweigh the performance benefit of
GPU computing.

2.4.3 Lack of an Efficient CPU-GPU Task Scheduler. A practical
GPU-accelerated RTL simulator with batch stimulus is both CPU-
and GPU-intensive. As shown in Listing 1, each simulation itera-
tion uses CPU threads to read and set the inputs (dut.set_inputs)
from an external file or, in our case many stimulus files, before
we can offload the evaluation to a GPU (sim.evaluate). As we
increase the number of stimulus, this sequential computation can
incur expensive waiting time between CPU and GPU. Figure 2 gives
an example of set_inputs time and GPU utilization rate at differ-
ent numbers of stimulus. We can see that the GPU utilization rate
drops significantly as the number of stimulus increases, since GPU
needs to wait until CPU threads finish setting inputs at each itera-
tion. The CPU-based call to set simulation input, dut.set_inputs
in Listing 1, becomes the primarily bottleneck. To overcome this
problem, we need an efficient scheduling method to overlap CPU
and GPU tasks across simulation loops.
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£ 30 40% 2
S 30% =
0 20% 3
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set inputs (CPU)  mmevaluate design (GPU) —GPU utilization rate

Figure 2: Runtime breakdown of a simulation benchmark
in terms of setting inputs, evaluating the design, and the
corresponding GPU utilization rate under different numbers
of stimulus.

3 RTLFLOW

Figure 3 shows the overview of RTLflow. At a high level, RTLflow
automatically transpiles RTL sources (.v) to C++ and CUDA code
to accelerate multi-stimulus simulation on a GPU. Our transpiler is
built atop Verilator to inherit its RTL-level optimization facilities,
such as inverter pushing, module inlining, and constant propagation
that have been rigorously tested for over 25 years in the Verilator
community. This decision allows us to focus on the problem of multi-
stimulus simulation itself and to enable future potential integration
into Verilator for the benefit of the entire community.

RTLflow consists of two parts, kernel code transpilation and task
graph code transpilation. In kernel code transpilation, we annotate
an RTL AST with textual modifications, and transpile the anno-
tated RTL AST into C++ and CUDA using effective GPU memory
allocation and mapping algorithms. In task graph code transpila-
tion, we partition the RTL graph into a GPU task graph using a
sampling-based algorithm. We execute the GPU task graph using
modern CUDA Graph parallelism [7], which is particularly useful
for our workload as it largely reduces repetitive kernel call over-
heads at simulation cycles. To further improve the performance, we
introduce a pipeline-based scheduling algorithm inspired by [12]
to explore inter-stimulus parallelism across simulation iterations.
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Figure 3: Overview of RTLflow.

3.1 Kernel Code Transpilation

We build our transpilation techniques atop Verilator’s RTL AST
parser to reuse its I/O infrastructure. However, it is still impossible
to transpile Verilog into not only compilable but efficient CUDA
code without optimally designed GPU memory management strate-
gies and carefully developed AST-to-CUDA transpiler. For example,
one easy way to transpile an RTL AST into CUDA is to traverse
the RTL AST and repeatedly allocate GPU memory for a variable
(i.e., data signal) as needed. However, this organization induces
significant memory allocation overheads and memory fragmenta-
tion problems that hamper the performance. To generate optimized
CUDA kernels for fast multi-stimulus simulation, the transpiled
C++/CUDA code and CUDA kernels must achieve both efficient
memory access and minimal memory allocation overheads. To this
end, our kernel code transpilation consists of three stages: AST anno-
tation, incremental GPU memory allocation, and GPU memory index
mapping. AST annotation annotates each AST node with textual
modifications and replaces embedded C++ code with compilable
CUDA code. Incremental GPU memory allocation incrementally
assigns a GPU memory offset for each variable. GPU memory index
mapping transpiles each AST node to CUDA code by mapping each
variable to a GPU memory location. In our kernel, each GPU thread
is responsible for running the simulation code of one stimulus.
Figure 4 shows an RTL AST in Verilator that consists of two
modules, m1 and m2. m1 contains two cells (c1 and c2), two vari-
ables (in and sum), and one function (func). A cell is an instance of
a module. For example, c1 is an instance of m1 that contains two
variables, c1.1in and c1.sum. The dotted line between VARREF and
VAR represents that VARREF is a variable reference to VAR. This RTL
AST uses a subtree of seven nodes to describe one line of assign-
ment code in Verilog. With the AST, Verilator emits C++ simulation
code for a single stimulus through a tree traversal algorithm. How-
ever, this algorithm cannot directly generate CUDA code because
the memory access patterns on GPUs with multiple stimulus are
completely different. In the following subsections, we explain three
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MODULE m2
ASSIGN Assign in=10’hl + sum;

MODULE ml

CFUNC func

CELL cl
CELL c2

Figure 4: An RTL AST that consists of two modules (m1 and m2).
m1 contains two cells (c1 and c2), two variables (in and sum),
and one function (func). The RTL AST requires seven AST
nodes to describe one line of Verilog code (the assignment
statement in black).

most important strategies that address the transpilation challenge,
using Figure 4 as an example.

Verilator

= (&

RTLflow
VARREF
= (o)
offset 3

(a) Simple ARRSEL subtree

ARRSEL Verilator
» vI[v2[2]]
[ VA5$EF ] [ ARRSEL ]
offset 3 RTLflow
VARREF CONST » [(varS +N * 3 + tid)[var8[N 72 + tid + 2]] ]
v2 2
offset 72

(b) Recursive ARRSEL subtree

Figure 5: (a) Simple ARRSEL subtree and (b) Recursive
ARRSEL subtree. Right part shows generated C++/CUDA code
using Verilator or RTLflow.

3.1.1 AST Annotation. Manipulating ASTs requires a massive cod-
ing effort since we need to carefully take care of each AST node type
(more than 300 node types in Verilator) for generating compilable
CUDA code. Some AST node types could also include embedded
C++ code that does not compile in CUDA. For instance, Figure 5
shows the simple and recursive subtrees each rooted at a ARRSEL
AST node that is responsible for generating variable name and
index. Verilator transpiles the two subtrees by simply generating
v1[2] and v1[v2[2]], while RTLflow needs to throughly look into
each child node for generating correct syntax (i.e, correct order of
"(",")", "[", and "]"). The correct syntax is annotated at the ARRSEL
AST node for later codegen. Another example of AST annotation
is adding a keyword (either __global__ or __device__) for func-
tions, as CUDA requires to distinguish whether a function could be
called by a host (CPU) or a device (GPU). Since RTLflow partitions



From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus

an RTL graph into dependent macro tasks that call functions inter-
nally, we annotate those macro tasks with __global__ and others
with __device__.

3.1.2  Incremental GPU Memory Allocation. Allocating GPU mem-
ory for all variables to enable high-performance memory access
is challenging, as the width of each variable is largely different.
We have researched several strategies to allocate GPU memory for
quick memory access, such as dynamic allocated arrays and one
fixed-width array. However, none of them can give us a promis-
ing performance result during simulation. For example, Figure 6
shows an inefficient strategy that uses one fixed-width array of
type uint8_t to store all variables where in is a 6-bit variable and
sum is a 14-bit variable stored into two memory locations, sum1
and sum2. To load all bits in sum, each GPU thread needs to access
strided memory twice. This data organization method results in
uncoalesced memory access that largely degrades the simulation
performance.

Each variable duplicates N times for N stimulus
Thread 1 Thread 2
l_x_\ l_x_\

uint8 ¢ |\ I ____J
array [ suml ][ sum?2 ][ sum]1 ][ sum?2 ]

| J\ J
Thrdad 1 Thread 2

in = 6-bit variable
sum = 14-bit variable

Figure 6: GPU memory allocation using one fixed-width
memory array of type uint8_t. in is a 6-bit variable, and
sum is a 14-bit variable stored into two memory locations,
suml and sum2.

Our incremental GPU memory allocation overcomes this issue
by preallocating four GPU arrays and incrementally assigning each
variable a GPU memory offset in reference to the preallocated ar-
rays. The four GPU arrays are var8, var16, var32, and var64, each
representing a fixed-width variable (uint8_t for 8 bits, uint16_t
for 16 bits, and so on). To minimize the GPU memory usage, a
variable is stored into the smallest of the four types that fits the
width of the variable.

N sm‘nulus offset N smAnulus
V0 )

# variables [ cl.in ][ cl.in ] AAAA [ clin ] """" s

whosewidth 1o\ cin] et sum J( etsum | [ c1.sum |
= 8 bits 5 var8 18 ...... varl6

int8 t
L (i) (uintl6_t)

#variables [
whose width_J @ ~~~~~~
var32

=17~32 bits
(uint32_t)

offset
r

Figure 7: GPU memory allocation for Figure 4. Each cell
(c1 and c2) contains two variables (in and sum). A variable
is stored in the smallest array of types uint8_t, uint16_t,
uint32_t, and uint64_t that fits the variable width.
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Figure 7 shows the memory allocation results of our strategy
based on Figure 4. Because the width of sum is between 9 and 16
bits, we use uint16_t to store c1.sum and c2. sum, similarly for in
whose width is smaller than eight bits. To handle N stimulus, we
duplicate one variable per cell N times in the corresponding array.
The size of each array is thus N X S;, where S; is the number of
variables in array i.

3.1.3  GPU Memory Index Mapping. The goal of GPU memory in-
dex mapping is to traverse an RTL AST and use computed GPU
memory offsets to emit GPU-efficient CUDA code. Listing 2 shows
Verilator’s transpiled C++ code using the partial RTL AST shown
in Figure 4. As opposed to Listing 2, Listing 3 shows the transpiled
CUDA code by RTLflow based on the offsets shown in Figure 7. To
enable efficient GPU memory access, the GPU relies on memory
coalescing to have GPU threads run the same instruction of con-
secutive memory locations. Since one GPU thread is responsible
for a stimulus, we map the GPU memory index of each variable to
GPU thread id plus the offset strided by N. For instance, the offset
of c1.inis 1 and thus its index is mapped to N*1 plus the thread
id tid that handles the tid-th stimulus. The proposed mapping
strategy allows all GPU threads to access consecutive GPU memory
locations throughout the entire RTL simulation, thus achieving
highly coalesced memory access.

void ml::cl_func() {
cl.in = 10hl1 + c1.sum;
}

void ml::c2_func() {
c2.in = 10h1 + c2.sum;
}

Listing 2: Transpiled C++ simulation pseudocode of Figure
4 by Verilator for a single stimulus. A hardware design is
allowed to copy a wider value (sum) to a narrower target (in)
(truncation will be applied).

// RTL simulation code with N stimulus

__device__ void ml::cl_func() {
tid=blockDim .x*blockIldx .x+threadldx .x;
var8 [N«1+tid]= / offset of cl.in is 1

10h1+var16 [N=17+tid ]; // offset of cl.sum is 17

}

__device__ void ml::c2_func() {
tid=blockDim .x*blockIldx .x+threadldx .x;
var8 [N«2+tid ]= / offset of c2.in is 2

10h1+var16 [N=18+tid ]; // offset of c2.sum is 18

}

Listing 3: Transpiled CUDA kernel pseudocode of Figure 4
using the GPU memory offsets in Figure 7.

3.2 Task Graph Code Transpilation

The goal of task graph code transpilation is to generate efficient
execution code using three strategies: 1) GPU-aware partitioning
to find a GPU-efficient task graph, 2) CUDA Graph execution to
reduce kernel call overheads, and 3) pipeline scheduling to enable
efficient CPU-GPU task overlap.

3.2.1 GPU-aware Partitioning. A common RTL graph partitioning
algorithm iteratively merges two nodes into a task using static,
hard-coded cost estimates [27, 28]. This strategy is simple but is
not efficient for RTLflow. Specifically, to maximize the performance
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of multi-stimulus simulation, we explore several degrees of paral-
lelism (e.g., task graph parallelism and pipeline scheduling) that
have dynamic interaction with the CUDA runtime. As a result,
we introduce a GPU-aware partitioning algorithm that estimates
partition costs in real operating conditions.

Design & Initial weights

. 4

_{ Estimator Estimated cost

|
i
i [ Compile & Run ]
|
|

Transpiled code&)
\ /

Best weights

\
Optimizer

i
i
[ MCMC & Transpile :
i
]

Figure 8: GPU-aware partitioning algorithm using MCMC to
explore the best combination of weights under real operating
conditions (compile + run).

Figure 8 shows the overview of our algorithm to find a GPU-
efficient task graph. We iteratively explore a new weight vector
for partitioning (i.e., merging nodes into tasks) using a Markov
Chain Monte Carlo (MCMC) sampling algorithm. Our algorithm
consists of two components: estimator and optimizer. The estimator
estimates the cost of a proposed GPU task graph by compiling its
transpiled code and running it on a GPU. We evaluate the graph
with a small number of randomly selected stimulus and cycles,
and use the results to predict other combinations. This strategy
allows us to discover parameters from a small set of data that is
representative for the entire problem. The optimizer iteratively
proposes a new graph by randomly and incrementally altering the
weight function weight_sum from the previous iteration, defined
below:

weight_sum(task) = Z wi * N (1)
teT
where T is the set of top k (e.g., 30) most frequently appeared RTL
nodes, w; is the weight of an RTL node ¢, and N; is the number of
RTL node ¢t in the given task. Given a merged task, we compute the
weighted sum of all RTL nodes in the task and use it to produce a
new task graph.

In MCMC sampling, we obtain samples from a probability distri-
bution so that a GPU task graph of faster runtime is visited more
often than the slower ones [13, 16]. The probability distribution is
the following:

p(G) x exp(=f * cost(G)) @

where G is a GPU task graph, cost(G) is the estimated cost of G
from the estimator, and f is a constant that can be chosen. We
use Metropolis-Hastings algorithm [16] to generate Markov chains,
which keeps the current GPU task graph and proposes a new one
G*. If G* is accepted, it replaces the current graph; otherwise we
propose another GPU task graph based on G again. The acceptance
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rate of a new GPU task graph is the following:
a(G — G*) = min(1,p(G")/p(G))
= min(1, exp(f = (cost(G) — cost(G"))))

where G* with a lower cost than G is always accepted, and G*
with a higher cost than G may still be accepted with a probability
depending on difference between cost(G) and cost(G").
Algorithm 1 shows the pseudocode of our proposed algorithm.
At the beginning, we initialize the weight of each RTL node to
one (line 5). During the sampling process, the optimizer randomly
increases one weight from the current weights (line 7). It then
proposes a new GPU task graph in terms of new weights (line 8).
The estimator evaluates the proposed graph with the given number
of stimulus and cycles and returns an estimated cost (line 9). If the
current estimated cost is larger than the new one, the optimizer
accepts the new weights and updates the current cost (line 10-14).
If not, we generate a random number from 0 to 1 to determine if we
accept the proposed graph (line 16-20). The iteration continues until
we cannot find a better graph for a maximum number of iterations.

®)

Algorithm 1: GPU-aware partitioning algorithm

Input: dut: a design under test

Input: MAX_ITER: maximum #iterations

Input: MAX _UNIMPROVED: maximum #unimproved
iterations

cur_cost «— oo

-

iter,cnt «— 0

Optimizer opt(dut)

Estimator est(dut)

opt.initialize_weights()

while cnt < MAX_UNIMPROVED and iter++ < MAX_ITER

)

(%)

'S

5

o

7 opt.random_increase()

8 graph < opt.propose()

9 cost « est.estimate_cost(graph)

10 if cur_cost > cost then

1 opt.update_weights()

12 cur_cost < cost

13 cnt «— 0

14 end

15 else

16 rand « uniform_distribution(0, 1)
17 if accept_rate(cost, cur_cost) > rand then
18 opt.update_weights()

19 cur_cost « cost

20 end

21 cnt++

22 end
23 end

3.2.2 CUDA Graph Execution Model. After obtaining a partitioned
GPU task graph, we need to offload it to a GPU. Traditionally, this
is done by creating multiple CUDA streams and events to dynam-
ically schedule tasks and manage their dependencies. However,
this paradigm will incur significant runtime overheads because
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it repeats the same stream and event management on the same
CUDA task graph over all simulation cycles. The new CUDA Graph
execution model [7] is particularly useful for solving this problem
via a define-once-run-repeatedly CUDA graph. The CUDA runtime
can perform whole-graph optimizations that are nearly impossible
to achieve by the stream-based approach. Figure 9 and 10 illustrate
the performance advantage of CUDA Graph compared to a stream-
based execution diagram that evaluates a GPU task graph. As we
can observe, the stream-based execution incurs multiple CUDA
call overheads (e.g., launching kernels through streams, creating
event dependencies) within a cycle, and these overheads accumu-
late across cycles. Such overheads can be eliminated by launching
a predefined CUDA graph to improve performance.

[0 CUDA call overhead [l Kernel execution (O Event  S;,S, Stream

C)&cle 1 Cxcle 2
f VT

ewl W 0 0 0

|
(a) Stream-based execution | :
Cyfle 1 Cyfle 2 | |

VT 1
|:| reduced

stream overhead
CUDA graph

-

Figure 9: Stream-based execution versus CUDA Graph-based
execution of the CUDA graph for two cycles. Stream-based
execution incurs repetitive CUDA call overheads to schedule
dependent kernels at each cycle.

f
cru ]
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(b) CUDA Graph-based execution

CUDA -
Graph cudaStreamSynchronize

RTS8 e e o e e

Figure 10: Partial simulation timeline of CUDA Graph-based
execution and stream-based execution using the data ex-
tracted from Nvidia Nsight Systems [5]. Blue bars represent
calls to launch CUDA kernels and green bars represent CUDA
synchronization calls.

cudaGraphLaunch ‘

3.2.3 Pipeline Scheduling Algorithm. As shown in Listing 1 and
Figure 2, multi-stimulus RTL simulation incurs significant over-
heads in setting the inputs, which in turn causes the GPU to wait.
To overcome this problem, we further partition batch stimulus into
groups and use a pipeline scheduling algorithm to overlap CPU and
GPU tasks both inside and outside partitioned stimulus groups.
Figure 11 shows the overview of our pipeline scheduling algo-
rithm. We partition batch stimulus into groups that each group, G;j,
can be concurrently simulated in a stage. At stage 1, we pass Gy
into our pipeline and simulate it at the first cycle, C;. Simulating
one cycle consists of four dependent CPU/GPU tasks shown in Fig-
ure 11. At stage 2, we pass Gy into our pipeline. We then simulate
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CPU set inputs evaluate set evaluate
GPU set clock design clock design

DTS each stage simulates one cycle -
~ -
~ \ - -

inter-stimulus parallelism

Figure 11: The proposed pipeline scheduling algorithm to
enable efficient overlap between CPU and GPU tasks.

G at Cy and G; at Cy in parallel. Since our pipeline scheduling does
not construct a dependency between groups, tasks in G; and tasks
in Gy can be overlapped. For instance, we can execute set_inputs
in G; and evaluate_design in G, simultaneously. Specifically, a
GPU only needs to wait for CPU threads to finish set_inputs for
a group, hence overlapping computation between CPU and GPU
tasks. Also, since we can offload multiple evaluation_design to
a GPU at a time, overlaps of evaluation_design across different
groups can further increase GPU utilization rate.

Note that RTLflow simulates multiple stimulus in parallel, differ-
ent memory coalescing patterns can occur in terms of the number
of stimulus. However, our transpliation can easily handle different
coalescing patterns through parameterization. For example, our
pipeline scheduling algorithm partitions all stimulus into groups
such that all stimulus within a group is simultaneously simulated
on a GPU. We can ensure memory access is mostly coalesced by
setting the proper group size (e.g., 256 or 1024 stimulus per group).

4 EXPERIMENTAL RESULTS

We evaluate RTLflow’s performance on three industrial designs,
NVDLA, Spinal, and riscv-mini. NVDLA is Nvidia’s open-source
project of deep learning accelerator [4]. riscv-mini and Spinal are
both RISC-V CPU projects [3, 6]. Table 1 lists the statistics of each
design. All projects have scripts that allow us to generate multiple
stimulus with different configurations. We implement RTLflow
using C++17 and CUDA 11.6, and compile RTLflow using nvcc on a
host compiler of GCC-8 with optimization -02 enabled. We did not
observe much performance difference between -O2 and -O3, but
-02 makes the compilation time faster (~3 minutes for -O2 and ~10
minutes for -O3). We use Taskflow [11, 18, 19] and its work-stealing
runtime [22] to implement our pipeline scheduling algorithm. We
run Verilator and ESSENT on a powerful CPU server and RTLflow
on a GPU desktop, described below:

e Machine 1 - a Ubuntu Linux 5.0.0-21-generic x86 64-bit machine
with 40 Intel Xeon Gold 6138 CPU cores (80 CPU threads) at 2.00
GHz and 256 GB RAM

e Machine 2 - a CentOS 8 x86 64-bit machine with 8 Intel i7-11700

CPU cores (16 CPU threads) at 2.5 GHz, one RTX A6000 48 GB
GPU, and 128 GB RAM
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Verilator RTLflow
Design Verilog LOC  #AST nodes | LOC  CCgqyy #Tokens Tirgns | LOC  CCqyy #Tokens  Tirans
riscv-mini 3306 25224 10640 21.7 66343 <1s 10935 15.7 171454 <1s
Spinal 6858 22888 8429 17.7 52646 <1s 9654 21.7 152459 <1s
NVDLA 511955 1476991 397536 16.4 3190699 30s 560412 4.8 10424172 33s

Table 1: Statistics of the benchmarks and results of transpiled code for Verilator and RTLflow. The results present lines of code
(LOC), average cyclomatic complexity per function (CCgyy), total number of tokens (#Tokens), and transpilation time (T;rqns)-

Note that typical RTL simulation workloads do not involve any
floating-point operations, i.e., all computations of RTLflow are in-
tegers. We do not leverage any single-precision optimizations to
accelerate throughput performance.

4.1 Baseline

We consider Verilator and ESSENT as our CPU baselines to mea-
sure the performance of RTLflow on simulating batch stimulus. To
emulate existing RTL simulation methods for batch stimulus, we
fork 80 processes of ESSENT (single-threaded simulator) to run 80
stimulus in parallel, and ten processes of Verilator (multi-threaded
simulator) to run ten stimulus in parallel and spawn eight threads
per process to run each stimulus. For NVDLA, we observe setting
the parallelism parameter (c) to eight in Verilator’s RTL graph par-
titioning algorithm achieves the best performance; for Spinal and
riscv-mini, we set a to two for Verilator, and fork 40 processes of
Verilator to run 40 stimulus in parallel to achieve the best perfor-
mance. Compared with NVDLA, Spinal and riscv-mini are smaller
designs and do not benefit as much from the partitioning.

4.2 Transpilation Results

Table 1 shows the benchmark statistics and the complexity of each
transpiled code using Verilator and RTLflow. Taking NVDLA for
example, RTLflow transpiles 511K lines of RTL to 560K lines of
CUDA and C++ simulation code in about 30 seconds. For large
designs like NVDLA, it is impractical for developers to rewrite all
RTL code to CUDA manually. Our transpiler is fully automatic, and
the generated CUDA code can be used out of the box for engineering
and research purposes. Without RTLflow, it becomes very difficult
for simulation engineers to harness the power of GPU computing
using minimal programming effort.

4.3 Overall Performance Comparison

Table 2 compares the elapsed simulation times between Verilator
(with 80 CPU threads) and RTLflow (with one A6000 GPU) on
Spinal and NVDLA. RTLflow outperforms Verilator using 80 CPU
threads in almost all scenarios. With 65536 stimulus, RTLflow is
46.7x faster on Spinal at 500K cycles and is 40.7x faster on NVDLA
at 10K cycles. We can clearly see the proposed GPU acceleration
flow brings significant performance benefits to simulate multiple
stimulus simultaneously. Figure 12 shows runtime comparisons
across different hardware platforms for NVDLA with 16384 stimu-
lus at 10K cycles. Compared to single-threaded Verilator, RTLflow
achieves 523X speed-up using one A6000 GPU. The significant
performance improvement demonstrates the promise of our multi-
stimulus simulation techniques.

1cru NN -1 day
4crU [N ) 542y 2 speed-up
16 cpU I - 5h 5x speed-up
40 crU [ 2h45m 8.7x speed-up
80 CPU [l 1h22m47s 17.4x speed-up
1 A6000 GPU |2m45s 523x speed-up (RTLflow)

0 20000 40000

Runtime (s)

60000 80000 100000

Figure 12: Runtime comparisons across different hardware
platforms for NVDLA with 16384 stimulus and 10K cycles.
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Figure 13: Runtime growth over increasing number of stimu-
lus for Verilator, ESSENT, and RTLflow on riscv-mini.

Figure 13 shows the runtime growth over increasing numbers
of stimulus for Verilator, ESSENT, and RTLflow on riscv-mini with
10K cycles. When the number of stimulus is smaller than 1024, all
simulators are able to finish simulation in five seconds, and the
advantage of GPU is not pronounced compared to others with 80
threads. When the number of stimulus is larger than 1024, in which
data parallelism becomes large, RTLflow starts to scale better than
Verilator and ESSENT. For instance, when increasing the number
of stimulus from 4096 to 65536, the runtime of RTLflow grows 4x
whereas Verilator and ESSENT grow 102X and 66X, respectively.

Absolute efficiency can be measured by the latency needed to
complete batch stimulus. Table 2 and Figure 13 provide some insight:
When the number of stimulus is small (e.g., <256), RTLflow does not
benefit from much data parallelism and thus CPU-based Verilator
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#cycles
10K \ 100K \ 500K
Design  #stimulus  Verilator RTLflow Speed-up  Verilator = RTLflow Speed-up  Verilator RTLflow  Speed-up
256 1s 1s 1x 14s 10s 1.4% 1m3s 48s 1.3%
1024 6s 1s 6X 52s 10s 5.2% 4m2s 50s 4.8%
Spinal 4096 23s 2s 11.5X% 3m25s 14s 14.6X 15m50s 1m12s 13.2%
16384 1m30s 4s 22.5X 13m39s 21s 39.0x 1h3m50s 1m37s 39.5%
65536 4m32s 16s 17.0X 52m18s 1m12s 43.6X 4h10m40s 5m22s 46.7X
256 1m2s 1m10s 0.89x 3m48s 8m46s 0.43x 15m16s 41m37s 0.37x
1024 3m58s 1m29s 2.7X 14m39s 10m56s 1.3%X 1h31m31s 53mls 1.7X
NVDLA 4096 21m50s 1m46s 12.4x 57m52s 13ml1s 4.4x% 4h1m17s 1h2m13s 3.9%
16384 1h22m47s 2m44s 30.3%x 6h37m50s 18m18s 21.7X 22h16m38s  1h24mb5s 15.9%
65536 5h31m14s 8ma3s 40.7X 26h31m52s  49m18s 32.3%X 89h16m22s 3h45m10s 23.8%

Table 2: Comparison of elapsed simulation times between Verilator (with 80 CPU threads) and RTLflow (with one A6000 GPU)
on Spinal and NVDLA for completing 256, 1024, 4096, 16384, and 65536 stimulus at 10K, 100K, and 500K clock cycles. All signal

outputs match the golden reference generated by Verilator.

is better. However, industrial simulators can easily call many thou-
sands of stimulus where RTLflow (GPU) wins out. The break-even
points can be observed in Table 2 for Spinal and NVDLA (256 and
1024 stimulus, respectively). Similar number is also observed in
Figure 13 for riscv-mini.

4.4 Performance Result of GPU Task Graph

Table 3 compares the runtime between RTLflow with and with-
out GPU-aware partitioning algorithm (RTLflow™9). For RTLflow,
we obtain weight_sum by running 150 MCMC sampling iterations
where each iteration evaluates the candidate partition (compile +
run) using 256 stimulus and 3K cycles. We do not observe much
difference beyond this number. Then, we use the weight vector
to run different scenarios of cycle and stimulus combinations. For
RTLflow™9, we use the default partitioning algorithm in Verilator
that hard codes weights [28]. We can clearly see the performance ad-
vantage of our GPU-aware partitioning algorithm. RTLflow speeds
up RTLflow ™7 in all scenarios with up to 5.8%. Our algorithm gen-
erates a better partitioned GPU task graph by performing estimates
in real operating conditions. The result also highlights that our
algorithm achieves predictable performance for different cycle and
stimulus numbers.

4096 stimulus 16384 stimulus

#cycles | RTLflow™9 RTLflow RTLflow™9 RTLflow
10K 1103s 10685 (13.3%) |  170.1s 163.5s (14%)
50K 428.9s 405.4s (15.8%) 611.9s 587.3s (14.2%)
100K 813.1s  791.0s (12.8%) | 11452s  1098.2s (14.3%)

Table 3: Runtime comparison in terms of improvement ()
between RTLflow with and without GPU-aware partitioning
algorithm (RTLflow9) for NVDLA with 4096 and 16384 stim-
ulus at 10K, 50K, 100K cycles.

Figure 14 shows partial RTL task graphs partitioned for Spinal
with and without our GPU-aware partitioning algorithm. Based on

our observation, our algorithm attempts to find a partition of many
parallel tasks, which in turn maximizes the kernel concurrency
of the induced CUDA graph. For instance, the task graph in (b)
implies many concurrent kernels at a specific level (e.g., task_B,
task_D, task_G, task_C, task_E, task_F) that results in a better
performance of CUDA Graph execution than (a).

=

(b) GPU-aware task graph partition

Figure 14: Partial RTL task graphs for Spinal with and with-
out our GPU-aware partitioning algorithm. Each task is a
GPU kernel that evaluates the design with batch stimulus.
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To further demonstrate the effectiveness of CUDA Graph, we im-
plement a stream-based execution algorithm to execute the CUDA
graph. Specifically, we implement the state-of-the-art CUDA Graph
transformation algorithm [23, 24] to capture a CUDA graph using
streams and events while maximizing the kernel concurrency. We
use four streams to capture the CUDA graph which achieves the
best performance on our A6000 GPU.

Spinal NVDLA
#cycles | stream CUDA Graph | stream CUDA Graph
10K 11.5s 2.3s (5x) 279.8s  106.5s (2.6X)
100K 108.0s 14.2s (7.6X) | 2046.9s  791.2s (2.6X%)
500K | 532.9s  72.3s(7.4%) | 9718.0s 3733.0s (2.6X)

Table 4: Performance advantage of CUDA Graph execution
in multi-stimulus simulation workloads, measured on Spinal
and NVDLA with 4096 stimulus under different numbers of
cycles.

Table 4 shows performance advantage of CUDA Graph execu-
tion in multi-stimulus simulation workloads. We can clearly see
the advantage of CUDA Graph. The CUDA Graph-based approach
outperforms the stream-based counterpart in all scenarios. For in-
stance, CUDA Graph reaches the goal 7.4x and 2.6 faster than
stream with 500K cycles for Spinal and NVDLA, respectively. Com-
pared with the stream-based approach, CUDA Graph launches all
dependent GPU tasks in the CUDA graph through a single CPU call
per cycle, thus largely reducing the kernel call overheads. Also, the
CUDA runtime can perform whole-graph optimizations to schedule
a CUDA graph without repetitively launching streams and events
to build up the dependency graph that is consistent across all cycles.

4.5 Performance Result of Pipeline Scheduling

Spinal NVDLA
#stimulus | RTLflow RTLflow RTLflow™? RTLflow
4096 14.7s 12.45s (119%) |  801.2s 791.2s (11%)
16384 274s  21.4s(128%) | 1399.2s  1098.0s (127%)
65536 11385 72.5s(157%) | 5281.0s  2957.8s (179%)

Table 5: Runtime comparison in terms of improvement (T)
between RTLflow with and without pipeline scheduling
(RTLflow ?) for Spinal and NVDLA with 100K cycles at dif-
ferent numbers of stimulus.

In this section, we study the performance benefit of our pipeline
scheduling. Table 5 compares the runtime between RTLflow with
and without pipeline (RTLflow ?) at different numbers of stimulus.
For fairness purpose, we use OpenMP to parallelize set_inputs
task in RTLflow ?, and both methods use the same MCMC parti-
tioning algorithm. Compared to RTLflow™?, RTLflow is faster at all
numbers of stimulus (up to 79%). The performance gap continues
to enlarge as we increase the number of stimulus. Without our
pipeline scheduling, RTLflow™? requires a GPU to wait until CPU
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Figure 15: Comparison of GPU utilization between RTLflow
with and without pipeline scheduling (RTLflow?) for simu-
lating Spinal and NVDLA with different numbers of stimulus
(under 10K cycles).

threads set inputs for all stimulus per cycle. The induced serial-
ization overhead becomes significant as the number of stimulus
increases.

Figure 15 plots the average GPU utilization rate profiled by
Nvidia System Management Interface [1]. RTLflow achieves nearly
100% GPU utilization rate across all numbers of stimulus on both
Spinal and NVDLA, whereas RTLflow™? suffers from lower uti-
lization rate as the number of stimulus increases. Our pipeline
scheduling enables RTLflow to asynchronously dispatch a group of
batch stimulus to GPU, thus keeping GPU highly utilized during
the entire simulation.

Figure 16 plots the utilization timeline of RTLflow ™ and
RTLflow using the data extracted from Nvidia Nsight Systems [5].
The timeline of CPU threads and GPU in RTLflow is much more
overlapped than RTLflow ?. Since our pipeline scheduling pro-
cesses batch stimulus in groups, GPU does not need to wait for
CPU threads to set inputs for all stimulus at each cycle. We also
observe high CPU and GPU utilization rates on RTLflow. This is
because our pipeline scheduling further explores inter-stimulus
parallelism to enable efficient overlap between CPU and GPU.

5 CONCLUSION

In this paper, we have introduced RTLflow, a GPU acceleration flow
to speed up RTL simulation with batch stimulus. RTLflow transpiles
the given RTL simulation code to C++ and CUDA, and combines
GPU-aware partitioning algorithm with modern CUDA Graph par-
allelism to efficiently run multiple stimulus on partitioned RTL
tasks. Our transpiler prevents designers from manually writing
GPU kernels for simulating RTL processes and hence largely im-
proves their productivity. To further enable effective computation
overlaps between CPU and GPU, we have introduced a pipeline
scheduling algorithm to explore inter-stimulus parallelism. We
have evaluated RTLflow on industrial designs and demonstrated its
promising performance compared to the industrial-strength RTL
simulators, Verilator and ESSENT. For instance, RTLflow on one
A6000 GPU outperforms 10 instances of Verilator each running 8
threads (a total of 80 CPU threads) with up to 40X on the NVDLA
of 65536 stimulus. We have made RTLflow open-source to benefit
the entire software simulation community [8].
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Figure 16: A snapshot of utilization timeline for RTLflow
with and without pipeline scheduling, reported by Nvidia
Nsight Systems [5].

In the future, we plan to evaluate RTLflow on a much larger range
of designs and stimulus, covering a wide range of design sizes and
activity factors. Also, we plan to enhance the performance of our
pipeline scheduling algorithm using the newest C++20 coroutine.
Coroutine will allow us to perform efficient multitasking between
CPU and GPU when a stage task at the pipeline submits its CUDA
Graph to a GPU. Furthermore, we plan to leverage the proposed al-
gorithms to accelerate other important research problems in circuit
designs [14, 15, 17, 20, 21] that share similar performance charac-
teristics with RTL simulation.
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APPENDIX

We have made RTLflow [8] open-source to beneift the entire com-
munity and inspire software simulation research.

A.1 Computational Artifacts: Yes

A.2 Experimental Environment

Verilator and ESSENT have their own optimization flags to en-
able their unique optimization techniques. We turn on the highest
level of optimizations for both baselines on each benchmark to
achieve their best performance. For RTLflow, we use Taskflow v3
to implement our pipeline scheduling algorithm.

A.2.1 Hardware.

o Verilator & ESSENT - a Ubuntu Linux 5.0.0-21-generic x86 64-
bit machine with 40 Intel Xeon Gold 6138 CPU cores (80 CPU
threads) at 2.00 GHz and 256 GB RAM

e RTLflow - a CentOS 8 x86 64-bit machine with 8 Intel i7-11700
CPU cores (16 CPU threads) at 2.5 GHz, one RTX A6000 48 GB
GPU, and 128 GB RAM

A.2.2  Software.

o Verilator & ESSENT - GCC-8 with optimization -02 enabled

e RTLflow - nvce of CUDA 11.6 on a host compiler of GCC-8 with
optimization -02 enabled

A.3 Software Artifact Availability
To compile RTLflow, simply run,

~/RTLflow$ autoconf
~/RTLflow$ ./ configure
~/RTLflow$ make -j8

We set nvce flag —arch=sm_86 to achieve the best performance
under our environment.
You can find baselines, RTLflow, and Taskflow here:

Verilator - https://github.com/verilator/verilator.git
e ESSENT - https://github.com/ucsc-vama/essent

o RTLfflow - https://github.com/dian-lun-lin/RTLflow
o Taskflow - https://github.com/taskflow/taskflow

A.4 Benchmarks

Before simulating a design, you need to build it for generating
Verilog code. You can build each design (riscv-mini, Spinal, and
NVDLA) by simply typing:

~RTLflow_benchmarks$ cd design
~RTLflow_benchmarks/design$ make

After make, NVDLA wll ask you to setup your environment (i.e.,
deisgn configuration, g++, Verilator, and RTLflow paths) to build
NVDLA. The configuration of NVDLA in this paper is hw_small.
For each design, you can generate multiple sitmulus by using
scripts. The scripts generate multiple stimulus by randomly con-
catenating stimulus offered by each design.
The link of each benchmark is the following:
e NVDLA - https://github.com/nvdla/hw
e Spinal - https://github.com/tomverbeure/cxxrtl_eval

e riscv-mini - https://github.com/ucb-bar/riscv-mini

Dian-Lun Lin, Haoxing Ren, Yanging Zhang, Brucek Khailany, and Tsung-Wei Huang

o RTLflow-benchmarks - https://github.com/dian-lun-lin/RTLflow-
benchmarks
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