skip to main content
10.1145/3545729.3545748acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmhiConference Proceedingsconference-collections
research-article

Digital Public Health Surveillance with Online Health Consultation Data: An Example of HIV Monitoring

Published: 13 October 2022 Publication History

Abstract

There is increasing interest in obtaining electronic information from sources other than official public health organizations for public health surveillance. The potential of novel digital data sources, such as internet news, search engine, social media, mobile apps and wearable devices in improving the speed, scope and temporal precision of disease surveillance have been demonstrated. However, the value of Online Health Consultation (OHC) data in public health surveillance is ignored. This study aims to assess the predictive value of OHC data in public health surveillance. This study constructs a public health surveillance system for HIV with OHC data based on the medical entities extraction and disease prediction two-module framework. This research outcome will contribute to closing the knowledge gap in the research area of digital public health surveillance and provide inspiration for relevant scholars to make better use of OHC data in their research.

References

[1]
Lee, L. M., & Thacker, S. B. (2011). The cornerstone of public health practice: public health surveillance, 1961–2011.
[2]
WHO. (2017). Surveillance in emergencies. Retrieved August 26, 2021 from: https://www.who.int/emergencies/surveillance
[3]
Yasnoff, W. A., O'Carroll, P. W., Koo, D., Linkins, R. W., & Kilbourne, E. M. (2000). Public health informatics: improving and transforming public health in the information age. Journal of Public Health Management and Practice, 67-75.
[4]
Gable, C. B. (1990). A compendium of public health data sources. American Journal of Epidemiology, 131(3), 381-394.
[5]
Friede, A., O'Carroll, P. W., Thralls, R. B., & Reid, J. A. (1996). CDC WONDER on the Web. In Proceedings of the AMIA Annual Fall Symposium (p. 408). American Medical Informatics Association.
[6]
Chorba, T. L., Berkelman, R. L., Safford, S. K., Gibbs, N. P., & Hull, H. F. (1990). Mandatory reporting of infectious diseases by clinicians. Morbidity and Mortality Weekly Report: Recommendations and Reports, 39(RR-9), 1-17.
[7]
Thacker, S. B., & Stroup, D. F. (1994). Future directions for comprehensive public health surveillance and health information systems in the United States. American journal of epidemiology, 140(5), 383-397.
[8]
McQueen, D. V., & Puska, P. (Eds.). (2003). Global behavioral risk factor surveillance. New York; London: Kluwer Academic/Plenum Publishers.
[9]
Morens, D. M., Taubenberger, J. K., & Fauci, A. S. (2008). Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. The Journal of infectious diseases, 198(7), 962-970.
[10]
Fidler, D. P., & Gostin, L. O. (2020). Biosecurity in the global age. Stanford University Press.
[11]
Kostkova, P. (2015). Grand challenges in digital health. Frontiers in public health, 3, 134.
[12]
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 337-339.
[13]
Kostkova, P., Szomszor, M., & St. Louis, C. (2014). # swineflu: The use of twitter as an early warning and risk communication tool in the 2009 swine flu pandemic. ACM Transactions on Management Information Systems (TMIS), 5(2), 1-25.
[14]
Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014.
[15]
Hulth, A., Rydevik, G., & Linde, A. (2009). Web queries as a source for syndromic surveillance. PloS one, 4(2), e4378.
[16]
Cho, S., Sohn, C. H., Jo, M. W., Shin, S. Y., Lee, J. H., Ryoo, S. M.,... & Seo, D. W. (2013). Correlation between national influenza surveillance data and google trends in South Korea. PloS one, 8(12), e81422.
[17]
Seo, D. W., Jo, M. W., Sohn, C. H., Shin, S. Y., Lee, J., Yu, M.,... & Lee, S. I. (2014). Cumulative query method for influenza surveillance using search engine data. Journal of medical Internet research, 16(12), e289.
[18]
Shin, S. Y., Seo, D. W., An, J., Kwak, H., Kim, S. H., Gwack, J., & Jo, M. W. (2016). High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea. Scientific reports, 6(1), 1-7.
[19]
Salathe, M., Bengtsson, L., Bodnar, T. J., Brewer, D. D., Brownstein, J. S., Buckee, C., ... & Vespignani, A. (2012). Digital epidemiology.
[20]
Salathé, M. (2018). Digital epidemiology: what is it, and where is it going?. Life sciences, society and policy, 14(1), 1-5.
[21]
Al-Mahdi, I., Gray, K., & Lederman, R. (2015). Online medical consultation: A review of literature and practice. In A. A. Maeder & J. Warren (Eds.), Proceedings of the 8th Australasian Workshop on Health Informatics and Knowledge Management
[22]
Schmidt, C. A., Schmidt-Weitmann, S. H., Lachat, M. L., & Brockes, C. M. (2014). Teleconsultation in vascular surgery: a 13 year single centre experience. Journal of telemedicine and telecare, 20(1), 24-28.
[23]
Brockes, M. C., Neuhaus Buhler, R. P., Schulz, E., Neumann, C. L., Schmidt-Weitmann, S. (2010). Online medical consulting service at the University Hospital Zurich before and after introduction of a service fee. Deutsche Medizinische Wochenschrift, 135, 231-235.
[24]
Huang, W., Cao, B., Yang, G., Luo, N., & Chao, N. (2021). Turn to the Internet First? Using Online Medical Behavioral Data to Forecast COVID-19 Epidemic Trend. Information Processing & Management, 58(3), 102486.
[25]
KantarHealth. (2020). Health awareness and behaviors WeChat survey. Retrived August 26, 2021 from: https://cn-en.kantar.com/business/health/2020/health-awareness-and-behaviors-during-covid-19-epidemic/.
[26]
Yu, V. L., & Madoff, L. C. (2004). ProMED-mail: an early warning system for emerging diseases. Clinical infectious diseases, 39(2), 227-232.
[27]
Carrion, M., & Madoff, L. C. (2017). ProMED-mail: 22 years of digital surveillance of emerging infectious diseases. International health, 9(3), 177-183.
[28]
Dion, M., AbdelMalik, P., & Mawudeku, A. (2015). Big data: big data and the global public health intelligence network (GPHIN). Canada Communicable Disease Report, 41(9), 209.
[29]
Brownstein, J. S., Freifeld, C. C., Reis, B. Y., & Mandl, K. D. (2007). HealthMap: Internet-based emerging infectious disease intelligence. Infectious disease surveillance and detection: assessing the challenges—finding solutions. Washington: National Academy of Science, 183-204.
[30]
Rortais, A., Belyaeva, J., Gemo, M., Van der Goot, E., & Linge, J. P. (2010). MedISys: An early-warning system for the detection of (re-) emerging food-and feed-borne hazards. Food Research International, 43(5), 1553-1556.
[31]
Eysenbach, G. (2006). Infodemiology: tracking flu-related searches on the web for syndromic surveillance. In AMIA annual symposium proceedings (Vol. 2006, p. 244). American Medical Informatics Association.
[32]
Polgreen, P. M., Chen, Y., Pennock, D. M., Nelson, F. D., & Weinstein, R. A. (2008). Using internet searches for influenza surveillance. Clinical infectious diseases, 47(11), 1443-1448.
[33]
Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014.
[34]
Buczak, A. L., Baugher, B., Moniz, L. J., Bagley, T., Babin, S. M., & Guven, E. (2018). Ensemble method for dengue prediction. PloS one, 13(1), e0189988.
[35]
Del Valle, S. Y., McMahon, B. H., Asher, J., Hatchett, R., Lega, J. C., Brown, H. E.,... & Mukundan, H. (2018). Summary results of the 2014-2015 DARPA Chikungunya challenge. BMC infectious diseases, 18(1), 1-14.
[36]
Pelat, C., Turbelin, C., Bar-Hen, A., Flahault, A., & Valleron, A. J. (2009). More diseases tracked by using Google Trends. Emerging infectious diseases, 15(8), 1327.
[37]
Viboud, C., Sun, K., Gaffey, R., Ajelli, M., Fumanelli, L., Merler, S.,... & Vespignani, A. (2018). The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. Epidemics, 22, 13-21.
[38]
Zhou, X. C., & Shen, H. B. (2010). Notifiable infectious disease surveillance with data collected by search engine. Journal of Zhejiang University SCIENCE C, 11(4), 241-248.
[39]
Signorini, A., Segre, A. M., & Polgreen, P. M. (2011). The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PloS one, 6(5), e19467.
[40]
Chew, C., & Eysenbach, G. (2010). Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PloS one, 5(11), e14118.
[41]
Culotta, A. (2010, July). Towards detecting influenza epidemics by analyzing Twitter messages. In Proceedings of the first workshop on social media analytics (pp. 115-122).
[42]
Aramaki, E., Maskawa, S., & Morita, M. (2011, July). Twitter catches the flu: detecting influenza epidemics using Twitter. In Proceedings of the 2011 Conference on empirical methods in natural language processing (pp. 1568-1576).
[43]
Krieck, M., Dreesman, J., Otrusina, L., & Denecke, K. (2011, June). A new age of public health: Identifying disease outbreaks by analyzing tweets. In Proceedings of health web-science workshop, ACM Web Science Conference (pp. 10-15).
[44]
Gittelman, S., Lange, V., Crawford, C. A. G., Okoro, C. A., Lieb, E., Dhingra, S. S., & Trimarchi, E. (2015). A new source of data for public health surveillance: Facebook likes. Journal of medical Internet research, 17(4), e3970.
[45]
Correia, R. B., Li, L., & Rocha, L. M. (2016). Monitoring potential drug interactions and reactions via network analysis of instagram user timelines. In Biocomputing 2016: Proceedings of the Pacific Symposium. 21: 492-503.
[46]
Agarwal, R., Gao, G., DesRoches, C., & Jha, A. K. (2010). Research commentary—The digital transformation of healthcare: Current status and the road ahead. Information systems research, 21(4), 796-809.
[47]
Dredze, M. (2012). How social media will change public health. IEEE Intelligent Systems, 27(4), 81-84.
[48]
Nakhasi, A., Passarella, R., Bell, S. G., Paul, M. J., Dredze, M., & Pronovost, P. (2012, October). Malpractice and malcontent: Analyzing medical complaints in twitter. In 2012 AAAI Fall Symposium Series.
[49]
Mao, J. J., Chung, A., Benton, A., Hill, S., Ungar, L., Leonard, C. E.,... & Holmes, J. H. (2013). Online discussion of drug side effects and discontinuation among breast cancer survivors. Pharmacoepidemiology and drug safety, 22(3), 256-262.
[50]
Cho, J. H., Liao, V. Q., Jiang, Y., & Schatz, B. R. (2013, September). Aggregating personal health messages for scalable comparative effectiveness research. In Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics (pp. 907-916).
[51]
Bonsall, D., & Fraser, C. (2020). Sustainable containment of COVID-19 using smartphones in China: Scientific and ethical underpinnings for implementation of similar approaches in other settings. GitHub, March, 16.
[52]
Wójcik, O. P., Brownstein, J. S., Chunara, R., & Johansson, M. A. (2014). Public health for the people: participatory infectious disease surveillance in the digital age. Emerging themes in epidemiology, 11(1), 1-7.
[53]
Nsoesie, E. O., Kluberg, S. A., Mekaru, S. R., Majumder, M. S., Khan, K., Hay, S. I., & Brownstein, J. S. (2015). New digital technologies for the surveillance of infectious diseases at mass gathering events. Clinical Microbiology and Infection, 21(2), 134-140.
[54]
Bempong, N. E., De Castañeda, R. R., Schütte, S., Bolon, I., Keiser, O., Escher, G., & Flahault, A. (2019). Precision global health–the case of Ebola: a scoping review. Journal of global health, 9(1).
[55]
Bonsall, D., & Fraser, C. (2020). Sustainable containment of COVID-19 using smartphones in China: Scientific and ethical underpinnings for implementation of similar approaches in other settings. GitHub, March, 16.
[56]
Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. (2015). Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS computational biology, 11(10), e1004513.
[57]
Kandula, S., Pei, S., & Shaman, J. (2019). Improved forecasts of influenza-associated hospitalization rates with Google Search Trends. Journal of the Royal Society Interface, 16(155), 20190080.
[58]
Shaman, J., & Karspeck, A. (2012). Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences, 109(50), 20425-20430.
[59]
Shaman, J., Karspeck, A., Yang, W., Tamerius, J., & Lipsitch, M. (2013). Real-time influenza forecasts during the 2012–2013 season. Nature communications, 4(1), 1-10.
[60]
Yang, S., Santillana, M., Brownstein, J. S., Gray, J., Richardson, S., & Kou, S. C. (2017). Using electronic health records and Internet search information for accurate influenza forecasting. BMC infectious diseases, 17(1), 1-9.
[61]
Rocklöv, J., Tozan, Y., Ramadona, A., Sewe, M. O., Sudre, B., Garrido, J.,... & Semenza, J. C. (2019). Using big data to monitor the introduction and spread of Chikungunya, Europe, 2017. Emerging infectious diseases, 25(6), 1041.
[62]
Lee, S. A., & Zuercher, R. J. (2017). A current review of doctor–patient computer-mediated communication. Journal of Communication in Healthcare, 10(1), 22–30.
[63]
Barrett, M.; Oborn, E.; Orlikowski, W. Creating value in online communities: The sociomaterial configuring of strategy, platform, and stakeholder engagement. Inf. Syst. Res. 2016, 27, 704–723.
[64]
Bensing J. M. Doctor-patient communication and the quality of care. An observation study into affective and instrumental behavior in general practice. Dissertation. NIVEL, Utrecht, 1991.
[65]
Akre, C., Michaud, P. A., Suris, J. C. (2010). “I'll look it up on the Web first”: Barriers and overcoming barriers to consult for sexual dysfunction among young men. Swiss Medical Weekly, 140, 348-353.
[66]
Brockes, M. C., Neuhaus Buhler, R. P., Schulz, E., Neumann, C. L., Schmidt-Weitmann, S. (2010). Online medical consulting service at the University Hospital Zurich before and after introduction of a service fee. Deutsche Medizinische Wochenschrift, 135, 231-235.
[67]
Shuyler KS, Knight KM. What are patients seeking when they turn to the internet? Qualitative content analysis of questions asked by visitors to an orthopaedics web site. J Med Internet Res. 2003;5:e24.
[68]
Yu, Z. (2021). Discursive strategies for addressing patients’ disalignment with diagnosis in online medical consultations in China. Discourse & Communication, 17504813211002033.
[69]
Kessler, S. H., & Schmidt-Weitmann, S. (2021). Diseases and emotions: An automated content analysis of health narratives in inquiries to an online health consultation service. Health Communication, 36(2), 226-235.
[70]
Chiu, M. H. P. (2016). An investigation of the questions posted on medical consultation websites. Health Information & Libraries Journal, 33(4), 283-294.
[71]
Tseng, M. Y., & Zhang, G. (2021). Conceptual metonymy and emotive-affective meaning at the interface: Examples from online medical consultations. Lingua, 103192.
[72]
Tseng, M. Y., & Zhang, G. (2018). Pragmeme, adaptability, and elasticity in online medical consultations. Journal of Pragmatics, 137, 40-56.
[73]
Briet, J. P., Hageman, M. G., Blok, R., & Ring, D. (2014). When do patients with hand illness seek online health consultations and what do they ask?. Clinical Orthopaedics and Related Research®, 472(4), 1246-1250.
[74]
Mao, Y., & Zhao, X. (2020). By the mitigation one knows the doctor: Mitigation strategies by Chinese doctors in online medical consultation. Health communication, 35(6), 667-674.
[75]
Garner Insights. Online Doctor Consultation Market: Global Market Synopsis, Growth Factors, Industry Segmentation, Regional Analysis And Competitive Analysis 2017 - 2025 URL: http:/​/garnerinsights.​com/​Online-Doctor-Consultation-Market-Global-Market-Synopsis-Growth-Factors-Industry-Segmentation-Regional-Analysis-And-Competitive-Analysis-2017—2025
[76]
Kantar Consulting. (2019). Kantar Consulting: Internet + Medical Health White Papers. http://www.199it.com/archives/823842.html. (Accessed 15 December 2020).
[77]
iResearch Consulting. (2020). 2020 China Internet plus Medical Research Report. http://report.iresearch.cn/report/202009/3645.shtml. (Accessed 2 December 2021).
[78]
iiMedia Research. (2020). the 2020 China Internet Medical Industry Report. https://www.iimedia.cn/c460/75770.html. (Accessed Accessed 2 December 2021)
[79]
Jiang, J., Cameron, A. F., & Yang, M. (2020). Analysis of massive online medical consultation service data to understand physicians’ economic return: Observational data mining study. JMIR medical informatics, 8(2), e16765.
[80]
Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991.
[81]
Akbik, A., Bergmann, T., & Vollgraf, R. (2019, June). Pooled contextualized embeddings for named entity recognition. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (pp. 724-728).
[82]
Peters, M. E. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.
[83]
Straková, J., Straka, M., & Hajič, J. (2019). Neural architectures for nested NER through linearization. arXiv preprint arXiv:1908.06926.
[84]
Scepanovic, S., Martin-Lopez, E., Quercia, D., & Baykaner, K. (2020, April). Extracting medical entities from social media. In Proceedings of the ACM Conference on Health, Inference, and Learning (pp. 170-181).
[85]
Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics (2001), 1189–1232.
[86]
Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).

Index Terms

  1. Digital Public Health Surveillance with Online Health Consultation Data: An Example of HIV Monitoring

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICMHI '22: Proceedings of the 6th International Conference on Medical and Health Informatics
    May 2022
    329 pages
    ISBN:9781450396301
    DOI:10.1145/3545729
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 October 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. digital surveillance
    2. online health consultation
    3. public health surveillance

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ICMHI 2022

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 77
      Total Downloads
    • Downloads (Last 12 months)26
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 14 Feb 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media