skip to main content
10.1145/3545729.3545777acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmhiConference Proceedingsconference-collections
research-article

The Analysis of Phage rz/rz1 Gene in Shigatoxin Bacteria

Authors Info & Claims
Published:13 October 2022Publication History

ABSTRACT

The phage rz/rz1 gene is a membrane subunit that is required for phage lysis to breach the bacterial host's outer membrane. Because of their proclivity to excise and infect multiple hosts, they are key drivers of horizontal gene transfer resulting in the bacteria becoming a STEC. This study aim to looked at the rz/rz1 gene of E. coli strain STEC and Shigella sonnei carrying stx gene, yielded eight lytic bacteriophages, using PCR, DNA sequencing and NCBI Blast, Expasy translation and Expasy protparam for analyze. The rz/rz1 gene sequences were found to have 97.73 % to 98.90 % identical similarities with E. coli strain STEC and Shigella sonnei. According to the Kruskal-Wallis statistical test, there was a significant difference in rz/rz1 amino acid between Phage, E. coli strain STEC and Shigella sonnei (p < 0.001). The conclusion is the rz/rz1 gene of lytic bacteriophage was involved in the spread of stx gene, with significant difference of amino acid.

References

  1. Farfan MJ, Torres AG. 2012. Molecular mechanisms that mediate colonization of shiga toxin-producing Escherichia coli strains. Infect Immun., 80(3), 903–13.Google ScholarGoogle ScholarCross RefCross Ref
  2. Farrokh C, Jordan K, Auvray F, Glass K, Oppegaard H, Raynaud S, 2013. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int J Food Microbiol., 162(2), 190–212. http://dx.doi.org/10.1016/j.ijfoodmicro.2012.08.008Google ScholarGoogle ScholarCross RefCross Ref
  3. Blanco M, Blanco JE, Mora A, Dahbi G, Alonso MP, Gonza EA, 2004. Serotypes, Virulence Genes, and Intimin Types of Shiga Toxin (Verotoxin)-Producing. Society, 42(2), 645–51.Google ScholarGoogle Scholar
  4. Wang F, Yang Q, Kase JA, Meng J, Clotilde LM, Lin A, 2013. Current trends in detecting non-O157 Shiga toxin-producing Escherichia coli in food. Foodborne Pathog Dis., 10(8), 665–77.Google ScholarGoogle ScholarCross RefCross Ref
  5. Melton-Celsa AR. 2014. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol Spectr., 2(4), 1–21.Google ScholarGoogle ScholarCross RefCross Ref
  6. Scheutz F, Teel LD, Beutin L, Piérard D, Buvens G, Karch H, 2012. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol., 50(9), 2951–63.Google ScholarGoogle ScholarCross RefCross Ref
  7. Luna-Gierke RE, Griffin PM, Gould LH, Herman K, Bopp CA, Strockbine N, 2014. Outbreaks of non-O157 Shiga toxin-producing Escherichia coli infection: USA. Epidemiol Infect., 142(11), 2270–80.Google ScholarGoogle ScholarCross RefCross Ref
  8. Scallan E, Hoekstra RM, Angulo FJ, V. TR, Marc-Alain W, Roy SL, 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis., 17(1), 7–15.Google ScholarGoogle ScholarCross RefCross Ref
  9. Karmali MA, Gannon V, Sargeant JM. 2010. Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol., 140(3–4), 360–70.Google ScholarGoogle ScholarCross RefCross Ref
  10. Bakri Z, Hatta M, Massi MN. 2015. Deteksi Keberadaan Bakteri Escherichia coli O157:H7 Pada Feses Penderita Diare Dengan Metode Kultur Dan PCR. JST Kesehatan, 5(2), 184–92.Google ScholarGoogle Scholar
  11. Syahrul F, Wahyuni CU, Notobroto HB, Wasito EB, Adi AC, Dwirahmadi F. 2020. Transmission media of foodborne diseases as an index prediction of diarrheagenic Escherichia coli: Study at elementary school, Surabaya, Indonesia. Int J Environ Res Public Health, 17(21), 1–13.Google ScholarGoogle ScholarCross RefCross Ref
  12. Zhan Y, Buchan A, Chen F. 2015. Novel N4 bacteriophages prevail in the cold biosphere. Appl Environ Microbiol., 81(15), 5196–202.Google ScholarGoogle ScholarCross RefCross Ref
  13. Silva JB, Storms Z, Sauvageau D. 2016. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett., 363(4), 1–11.Google ScholarGoogle Scholar
  14. Fokine A, Rossmann MG. 2014. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage, 4(2):e28281.Google ScholarGoogle ScholarCross RefCross Ref
  15. Casjens SR, Molineux IJ. 2012. Short noncontractile tail machines: Adsorption and DNA delivery by podoviruses. In: Advances in Experimental Medicine and Biology, p. 143–79.Google ScholarGoogle Scholar
  16. Xu J, Xiang Y. 2017. Membrane Penetration by Bacterial Viruses. J Virol., 91(13), 1–7.Google ScholarGoogle ScholarCross RefCross Ref
  17. Shi Y, Yan Y, Ji W, Du B, Meng X, Wang H, 2012. Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virol J., 9, 1–11.Google ScholarGoogle ScholarCross RefCross Ref
  18. Łoś JM, Łoś M, Wȩgrzyn A, Wȩgrzyn G. 2010. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol Med Microbiol., 58(3), 322–9.Google ScholarGoogle ScholarCross RefCross Ref
  19. Rahal EA, Fadlallah SM, Nassar FJ, Kazzi N, Matar GM. 2015. Approaches to treatment of emerging Shiga toxin-producing Escherichia coli infections highlighting the O104: H4 serotype. Front Cell Infect Microbiol., 5(MAR), 1–9.Google ScholarGoogle Scholar
  20. Los J, Los M, Wegrzyn G. 2011. Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol., 6(8), 909–24.Google ScholarGoogle ScholarCross RefCross Ref
  21. Wagner PL, Neely MN, Zhang X, Acheson DWK, Waldor MK, Friedman DI. 2001. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol., 183(6), 2081–5.Google ScholarGoogle ScholarCross RefCross Ref
  22. Bielaszewska M, Mellmann A, Zhang W, Köck R, Fruth A, Bauwens A, 2011. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: A microbiological study. Lancet Infect Dis., 11(9), 671–6. http://dx.doi.org/10.1016/S1473-3099(11)70165-7Google ScholarGoogle ScholarCross RefCross Ref
  23. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, 2011. Prospective genomic characterization of the german enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One, 6(7), 1–9.Google ScholarGoogle ScholarCross RefCross Ref
  24. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, 2011. Origins of the E. coli Strain Causing an Outbreak of Hemolytic–Uremic Syndrome in Germany. N Engl J Med., 365(8), 709–17.Google ScholarGoogle ScholarCross RefCross Ref
  25. Hauswaldt S, Nitschke M, Sayk F, Solbach W, Knobloch JKM. 2013. Lessons learned from outbreaks of shiga toxin producing Escherichia coli. Curr Infect Dis Rep., 15(1), 4–9.Google ScholarGoogle ScholarCross RefCross Ref
  26. Sjahriani T, Wasito EB, Tyasningsih W. 2021. Isolation and Identification of Escherichia coli O157:H7 Lytic Bacteriophage from Environment Sewage. Int J Food Sci, 2021 (Article ID 7383121).Google ScholarGoogle Scholar
  27. Sjahriani T, Wasito EB, Tyasningsih W. 2021. The Analysis of OmpA and Rz/Rz1 of Lytic Bacteriophage from Surabaya, Indonesia. Scientifica. 2021 (Article ID 7494144).Google ScholarGoogle Scholar
  28. Kongari R, Rajaure M, Cahill J, Rasche E, Mijalis E, Berry J, 2018. Phage spanins: Diversity, topological dynamics and gene convergence. BMC Bioinformatics., 19(1), 1–26.Google ScholarGoogle ScholarCross RefCross Ref
  29. Cahill J, Rajaure M, O'Leary C, Sloan J, Marrufo A, Holt A, 2017. Genetic analysis of the lambda spanins Rz and Rz1: Identification of functional domains. G3 Genes, Genomes, Genet., 7(2), 741–53.Google ScholarGoogle Scholar
  30. Khalil RKS, Skinner C, Patfield S, Xiaohua H. 2016. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and E. coli strains. Pathog Dis., 74(5), 1–65.Google ScholarGoogle ScholarCross RefCross Ref
  31. Martínez-Castillo A, Muniesa M. 2014. Implications of free Shiga toxin-converting bacteriophages occurring outside bacteria for the evolution and the detection of Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol., 4(APR), 1–8.Google ScholarGoogle Scholar
  32. Krüger A, Lucchesi PMA. 2015. Shiga toxins and stx phages: Highly diverse entities. Microbiol (United Kingdom)., 161(3), 1–12.Google ScholarGoogle Scholar
  33. Gyles C, Boerlin P. 2014. Horizontally Transferred Genetic Elements and Their Role in Pathogenesis of Bacterial Disease. Vet Pathol., 51(2), 328–40.Google ScholarGoogle ScholarCross RefCross Ref
  34. Tyler JS, Mills MJ, Friedman DI. 2004. The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression. J Bacteriol., 186(22), 7670–9.Google ScholarGoogle ScholarCross RefCross Ref
  35. Pinto G, Sampaio M, Dias O, Almeida C, Azeredo J, Oliveira H. 2021. Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics, 22(1), 1–13.Google ScholarGoogle ScholarCross RefCross Ref
  36. Bonanno L, Loukiadis E, Mariani-Kurkdjian P, Oswald E, Garnier L, Michel V, 2015. Diversity of shiga toxin-producing Escherichia coli (STEC) O26: H11 strains examined via stx subtypes and insertion sites of Stx and EspK bacteriophages. Appl Environ Microbiol., 81(11), 3712–21.Google ScholarGoogle ScholarCross RefCross Ref
  37. Wegrzyn G, Licznerska K, Wegrzyn A. 2012. Phage λ-New Insights into Regulatory Circuits. Adv Virus Res., 82, 155–78.Google ScholarGoogle ScholarCross RefCross Ref
  38. Loś JM, Loś M, Wȩgrzyn A, Wȩgrzyn G. 2013. Altruism of Shiga toxin-producing Escherichia coli: Recent hypothesis versus experimental results. Front Cell Infect Microbiol., 4(JAN), 1–8.Google ScholarGoogle Scholar
  1. The Analysis of Phage rz/rz1 Gene in Shigatoxin Bacteria

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICMHI '22: Proceedings of the 6th International Conference on Medical and Health Informatics
      May 2022
      329 pages
      ISBN:9781450396301
      DOI:10.1145/3545729

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 October 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)7
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format