skip to main content
10.1145/3546118.3546154acmotherconferencesArticle/Chapter ViewAbstractPublication PagescompsystechConference Proceedingsconference-collections
research-article

Active Segmentation: Differential Geometry meets Machine Learning

Authors Info & Claims
Published:14 August 2022Publication History

ABSTRACT

Image segmentation is an active area of research for more than 30 years. Traditional image segmentation algorithms are problem-specific and limited in scope. On the other hand, machine learning offers an alternative paradigm where predefined features are combined into different classifiers, providing pixel-level classification and segmentation. However, machine learning only can not address the question as to which features are appropriate for a certain classification problem.  This paper presents a project supported in part by the International Neuroinformatics Coordination Facility through the Google Summer of code. The project resulted in an automated image segmentation and classification platform, called Active Segmentation for ImageJ (AS/IJ). The platform integrates a set of filters computing differential geometrical invariants and combines them with machine learning approaches.

References

  1. M.D. Abramoff, P.J. Magalhaes, and S.J. Ram. 2004. Image Processing with ImageJ. Biophotonics International 11, 7 (2004), 36–42.Google ScholarGoogle Scholar
  2. I. Arganda-Carreras, V. Kaynig, C. Rueden, K. W. Eliceiri, J. Schindelin, A. Cardona, and S. H. Seung. 2017. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification.Bioinformatics (Oxford, England) (March 2017). https://doi.org/10.1093/bioinformatics/btx180Google ScholarGoogle Scholar
  3. S. Berg, D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler, C. Haubold, M. Schiegg, J. Ales, T. Beier, M. Rudy, K. Eren, J. I Cervantes, B. Xu, F. Beuttenmueller, A. Wolny, C. Zhang, U. Koethe, F. A. Hamprecht, and A. Kreshuk. 2019. ilastik: interactive machine learning for (bio)image analysis. Nature Methods 16, 12 (sep 2019), 1226–1232. https://doi.org/10.1038/s41592-019-0582-9Google ScholarGoogle ScholarCross RefCross Ref
  4. A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng, J. Pulokas, P. Tomancak, and V. Hartenstein. 2010. An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy. PLoS Biology 8, 10 (Oct. 2010), e1000502. https://doi.org/10.1371/journal.pbio.1000502Google ScholarGoogle ScholarCross RefCross Ref
  5. F. de Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J-C Olivo-Marin. 2012. Icy: an open bioimage informatics platform for extended reproducible research. Nature Methods 9, 7 (jun 2012), 690–696. https://doi.org/10.1038/nmeth.2075Google ScholarGoogle ScholarCross RefCross Ref
  6. R. Duits, M. Felsberg, L. Florack, and B. Platel. 2003. Alpha-scale spaces on a bounded domain. Scale Space Methods in Computer Vision. 494- 510. Springer (2003).Google ScholarGoogle Scholar
  7. L. Florack, B. Ter Haar Romeny, M. Viergever, and J. Koenderink. 1996. The Gaussian scale-space paradigm and the multiscale local jet. International Journal of Computer Vision 18, 1 (apr 1996), 61–75. https://doi.org/10.1007/bf00126140Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. M J Florack, B. M ter Haar Romeny, J. J Koenderink, and M. A Viergever. 1992. Scale and the differential structure of images. Image and Vision Computing 10 (1992), 376–388.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. A. Hall. 1998. Correlation-based Feature Subset Selection for Machine Learning. Ph. D. Dissertation. University of Waikato, Hamilton, New Zealand.Google ScholarGoogle Scholar
  10. Michael R. Lamprecht, David M. Sabatini, and Anne E. Carpenter. 2007. CellProfiler™: free, versatile software for automated biological image analysis. BioTechniques 42, 1 (jan 2007), 71–75. https://doi.org/10.2144/000112257Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Macdonald. 2016. A Survey of Geometric Algebra and Geometric Calculus. Advances in Applied Clifford Algebras(2016), 1–39. https://doi.org/10.1007/s00006-016-0665-yGoogle ScholarGoogle Scholar
  12. E. Meijering. 2012. Cell Segmentation: 50 Years Down the Road [Life Sciences]. IEEE Signal Processing Magazine 29, 5 (sep 2012), 140–145. https://doi.org/10.1109/msp.2012.2204190Google ScholarGoogle ScholarCross RefCross Ref
  13. E. J Pauwels, L. J. Van Gool, P. Fiddelaers, and T. Moons. 1995. An extended class of scale-invariant and recursive scale space filters. Pattern Analysis and Machine Intelligence, IEEE Transactions on 17, 7(1995), 691–701.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Prodanov. 2019. Integral Representations and Algebraic Decompositions of the Fox-Wright Type of Special Functions. Fractal and Fractional 3, 1 (jan 2019), 4. https://doi.org/10.3390/fractalfract3010004Google ScholarGoogle ScholarCross RefCross Ref
  15. C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 1 (nov 2017). https://doi.org/10.1186/s12859-017-1934-zGoogle ScholarGoogle ScholarCross RefCross Ref
  16. C. A Schneider, W. S Rasband, and K. W Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis.Nature methods 9 (July 2012), 671–675. Issue 7.Google ScholarGoogle Scholar
  17. S. K. Vohra and D. Prodanov. 2021. The Active Segmentation Platform for Microscopic Image Classification and Segmentation. Brain Sciences 11, 12 (dec 2021), 1645. https://doi.org/10.3390/brainsci11121645Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Active Segmentation: Differential Geometry meets Machine Learning

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        CompSysTech '22: Proceedings of the 23rd International Conference on Computer Systems and Technologies
        June 2022
        188 pages
        ISBN:9781450396448
        DOI:10.1145/3546118

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 14 August 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate241of492submissions,49%
      • Article Metrics

        • Downloads (Last 12 months)17
        • Downloads (Last 6 weeks)4

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format