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ABSTRACT

Isolated execution with CPU-level protection, such as process

sandboxes, virtual machines, and trusted execution environments,

has long been studied to mitigate software vulnerabilities. However,

the complexity of system software inevitably leads to vulnerabilities

in isolated execution environments themselves, and the increase

in hardware complexity makes it even more challenging to avoid

hardware vulnerabilities. In this paper, we explore the possibility of

isolated execution at the machine level using physically separated

machines as an extreme case of isolation. We take advantage

of recent hardware technologies to enable relatively low-latency

communication between physical machines while dramatically

reducing the attack surface and trusted computing base size

compared to sharing computing resources on a single machine.

As the first step in this direction, we discuss the security and

performance of isolating processes to another machine with remote

system calls and show its feasibility with preliminary experiments.
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• Security and privacy → Operating systems security; • Com-

puting methodologies → Distributed computing methodologies; •
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1 INTRODUCTION

Security vulnerabilities have always been a serious problem in

computer systems. Since vulnerabilities can cause critical damage

to the systems, such as arbitrary code execution and information

disclosure, it is desirable to eliminate as many vulnerabilities as

possible. Unfortunately, despite significant efforts in vulnerability
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detection techniques [65, 94], modern computer systems are so large

and complex that it is impractical to eliminate all vulnerabilities.

In addition, attack methods are constantly evolving, ranging from

classical memory corruption attacks [15, 18] to recent transient

execution attacks [87], making the battle between attack and

defense endless. Although fundamental resolutions such as the

use of type-safe languages [46] and formal verification [37, 49]

are becoming practical, there is still a considerable amount of

codebase written in legacy programming languages, leading to

the continuous discovery of security vulnerabilities [21]. Therefore,

we need defense-in-depth mechanisms that assume the existence

of vulnerabilities and can mitigate the damage from attacks.

Isolated execution is an effective technique to minimize the

impact of security vulnerabilities. Following the principle of

least privileges [67], separating the components of programs

and confining them into protection domains will reduce the

amount of information the attacker can access. Plenty of protec-

tion mechanisms for isolated execution have been studied even

only recently, including intra-process isolation [68, 69, 81, 84],

process-based sandboxes [16, 23, 28, 29], operating system (OS)

containers [9, 51, 71, 78], intra-kernel protection [31, 32, 60, 61],

virtual machines [47, 48, 58], and trusted execution environments

(TEEs) [24, 42, 45, 93]. Unfortunately, these isolated execution

environments are controlled by system software using primitive

CPU functions, making it challenging to eradicate their own

vulnerabilities [25, 64, 73, 74].

A generic and practical approach to addressing system software

vulnerabilities is to reduce the attack surface [55] and keep the

trusted computing base (TCB) small [67]. For example, various

studies have attempted to limit the number of system calls and/or

debloat (reduce) the amount of executable kernel code [6, 29, 33,

89, 91]. Similarly, hypervisors have also been studied in numerous

attempts to reduce their attack surface and TCBs [8, 79], including

those combined with library OSs [13, 40, 53]. However, these

techniques still need privileged software to control the CPU-level

protection mechanisms on the machine of isolated execution

environments, leaving the attack surface and TCB on the same

machine. In addition, recent increases in hardware complexity make

it difficult to avoid attacks that exploit hardware vulnerabilities,

such as transient execution [87] and RowHammer [59], making

complete isolation on a single machine increasingly difficult.

This paper explores the possibility of isolated execution at

the machine level as an extreme case of isolation. Taking the

opposite approach to enhancing isolation on a single machine, we

use physically isolated machines that do not share computational

resources to achieve strong isolation. Unlike existing distributed

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546591.3547530&domain=pdf&date_stamp=2022-08-30
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computing, such as classical distributed operating systems [12, 80],

current multi-tier cloud architectures [39], and recent serverless

computing [50], we place most of the privileged software that con-

trols isolated execution environments on a physical machine that

is separated from the isolated execution environments themselves,

with virtually no attack surface or TCB on the isolated execution

machine. To enable secure and low-latency communication between

physical machines, we exploit specialized FPGA-based hardware

that allows unidirectional RDMA from a remote machine to any

physical address on the target machine without software support.

We believe that this specialized RDMA hardware, coupled with

the increasing difficulty of achieving vulnerability-free isolation at

the CPU level, will bring machine-level isolation closer to a realistic

option in balancing security and performance. However, there are

still many unanswered questions regarding machine-level isolated

execution, such as how to adapt existing software, what interface

design is appropriate, and what the quantitative overhead is. As

the first step toward answering these questions, we present a case

study of machine-level isolation at a system call boundary, i.e., a

sandbox system where untrusted applications run on a dedicated

physical machine and system calls are handled by host processes

and host OS on a physically separated machine. System call level

isolation can leverage the existing isolation boundary of user and

kernel space, facilitating the application of this approach to existing

systems and reuse of cleanly designed system call interfaces.

To estimate the performance in this system call level approach,

we conducted preliminary experiments using a micro-benchmark

and two real-world applications, OpenSSL and SQLite. The ex-

perimental results show that this approach incurs a significant

overhead on system calls themselves as expected, reaching 943

times, while OpenSSL has an overhead of at most 1.7%, and SQLite

has an overhead of 2% on some workloads, although more than 100

times slower on some other workloads. These results indicate that

this approach could be practical for some specific applications and

workloads. We also conducted a security evaluation and clarified

that this approach could achieve unprecedentedly strong isolation

that can address various attacks, including hardware ones.

The remainder of this paper is organized as follows. Section 2

explains our threat model. Section 3 describes the design, and

Section 4 describes the implementation. Section 5 presents the

results of the performance evaluation, and Section 6 presents the

security evaluation. Section 7 discusses related work, Section 8

discusses future work, and Section 9 summarizes this paper.

2 THREAT MODEL

We assume that an attacker can compromise a target application in

the user-space process and completely take over its control. The at-

tacker can issue arbitrary system calls and access arbitrary memory

in the process’s virtual address space, thereby attempting various

attacks, including arbitrary code execution, memory corruption,

and information leakage. For example, the attacker can attempt

a return-to-user (ret2usr) attack, exploiting a vulnerability in the

privileged code running on the same machine as the application

to execute arbitrary code at the privileged level. We also assume

that the application shares hardware resources such as CPU cache

and physical memory with privileged code running on the same

Isolated Process Host Process

Thin OS

Isolated Machine Host Machine

Host OS
system call buffer

Proxy

RDMAsystem call

Figure 1: Overview of our architecture

machine, so attackers can attempt attacks exploiting hardware

vulnerabilities, such as transient execution or DRAM interference.

We do not assume attacks that are complete within the OS kernel

without executing arbitrary code placed in the application’s address

space. For example, time-of-check-to-time-of-use attacks to bypass

permission checks by the OS kernel or denial-of-service attacks

against the OS kernel through invalid arguments are outside the

direct scope of this paper. We can mitigate such direct attacks on

the OS kernel by combining existing techniques, which we will

discuss in the next section. We also currently assume only one-way

attacks from the compromised applications to the OS kernel; we

assume that the OS kernel can be trusted and will not attack the

applications. In future work, we plan to relax this assumption by

running the applications in TEEs.

3 DESIGN

Our goal toward machine-level isolation in this paper is to create

a robust sandbox system where untrusted applications can run

without affecting other applications and OS kernels. Our sandbox

shares many characteristics with previous process-based sandboxes

using system call interposition [7, 11, 26, 27, 30, 36, 66]. However,

separating the machine for untrusted applications from others will

significantly improve the resistance to attacks that assume the

CPU, memory, or physical devices are shared between untrusted

applications and the target software.

Figure 1 shows an overview of our basic architecture. There

are two physical machines: the isolated machine and host machine.

The isolated machine runs isolated processes, that is, processes of

untrusted applications. The host machine runs the host process that

controls the isolated machine and works as a reference monitor.

The two machines are connected through RDMA hardware.

When an isolated process issues a system call, a tiny piece of

code, called the proxy, stores the number and arguments of the

system call in the system call buffer. The proxy does not handle the

system call but notifies the host process to handle the system call.

The host process retrieves the contents of the system call buffer

with RDMA, handles the system call using host OS functions as

needed, and returns the result with RDMA. If necessary, the host

process writes to the memory on the isolated machine with RDMA,

e.g., to return I/O data or for memory management.

To reduce the attack surface and TCB of the isolated machine

as much as possible, we run only a small privileged code, called
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the thin OS, on the isolated machine. Unlike a regular full-fledged

OS, the thin OS provides only minimal functionality to set up

execution environments for isolated processes. Specifically, the

thin OS implements auxiliary functions that can only be performed

on the CPU of the isolate machine, such as hardware initialization

and configuration of the MMU and exception handlers. Also, to

eliminate the need for drivers and agents for the thin OS, we use

hardware that can perform RDMA without software support. In

addition, we implement the thin OS using a type-safe language to

eliminate vulnerabilities to memory corruption attacks. Since most

of the system call logic is implemented within the host process, it

is unlikely that the thin OS will be vulnerable to attacks or cause

compatibility problems with applications.

To achieve complete mediation [67], we connect the isolated

machine only to the host machine via RDMA so that system calls via

RDMA become the only interface for isolated processes. In addition,

we use unidirectional RDMA hardware that can initiate memory

transfers only from the host machine, not from the isolated machine.

This ensures that even if the isolated machine is compromised

through the few interfaces present in the proxy or thin OS, all it

can do is issue system calls to the host machine and cannot access

host physical memory via RDMA.

In this architecture, isolated processes cannot launch attacks

on the host machine that assume that hardware is shared, such as

ret2usr, transition execution, and memory interference. Isolated

processes may indirectly attack the host machine via system calls.

However, the advantage of this architecture is that some of the

complex system calls, such as process and memory management,

can be implemented at the user level without host OS support, as

they control hardware on the isolated machine rather than the

host machine. Therefore, the host OS kernel is not compromised

even if such system call implementation is compromised. System

calls that would be transferred directly to the host OS, such as

file and socket I/O, could still compromise the host OS kernel.

However, we can mitigate this problem by combining existing

techniques such as system call filtering [89], kernel debloating [6],

and using unikernels [43]. Thus, this architecture is more secure

than traditional sandboxes on a single machine.

We can configure the number of isolated processes, isolated

machines, host processes, and host machines in several ways. Using

one for each is the most isolated configuration but is less efficient in

resource utilization. Placing multiple isolated processes belonging

to the same security domain on a single isolated machine can

balance security and resource utilization. In cloud environments,

it would be reasonable to have multiple isolated machines with

moderate performance for cases where high security is required,

as in the case of bare-metal clouds. Multiple host processes could

be placed on a single host machine to improve resource efficiency

further. In this case, if the host process is compromised and the host

OS kernel is further compromised, we cannot maintain isolation.

Therefore, combining existing isolation mechanisms, such as more

robust sandboxing or virtual machines, is desirable.

4 IMPLEMENTATION

In this section, we show our implementation for Linux x86-64

systems. We implemented the thin OS in Rust to eliminate memory-

related vulnerabilities. The host process is currently implemented

in C, but we will rewrite it in Rust in the future.

In the remainder, we first describe the RDMA hardware that

we used, and then describe the implementation of the proxy, host

process, and thin OS. Finally, we report the implementation status.

4.1 RDMA hardware

To summarize the description in Section 3, we need the following

properties for the RDMA hardware.

Software independence: The host machine can perform RDMA

to the isolated machine without driver software.

Full physical memory access: The host machine can

read/write all the physical memory of the isolated machine.

Unidirectional access: Only the host machine can initiate

RDMA to the isolated machine, not the other way around.

Notification capability: The isolated machine can notify the

host machine of events.

Most of the current RDMA systems are designed for data commu-

nication in user space, and few meet all of the above requirements;

they may require software for initialization and management on

both machines, only allow access to pre-approved memory areas,

or have difficulty limiting access to one direction. Therefore, we

exploited FPGAs to create RDMA hardware that meets all the above

requirements. Instead of implementing it from scratch, we take

advantage of a part of the functionality already implemented in

NetTLP [41]. NetTLP was originally developed for PCI Express

(PCIe) device development to remotely handle transaction layer

packets (TLP) of the PCIe bus in software. However, as part of its

functionality, it has the RDMA capability that meets the above

requirements, so we decided to reuse it.

The actual hardware of NetTLP is a PCIe device with FPGA and

NIC. This PCIe device is connected to a remote machine via the

NIC, and DMA read/write data can be transferred via the NIC. The

DMA function of this device is remotely controlled by software on

the remote machine, so the device can start DMA by itself without

driver support and can function as unidirectional RDMA. The device

itself appears to be a normal PCIe device, but software access to a

part of the configuration space is sent to the remote machine via

the NIC, so it can be used as a notification function.

4.2 Proxy

A proxy is a simple piece of code that mediates system calls from

the isolated process and writes its information to the system call

buffer in a predetermined physical address area. The information

of a system call is the system call number and arguments, which

are stored in CPU registers. For example, in Linux x86-64 ABI, the

number of the write(2) system call is "2", so the number "2", the file

descriptor, the buffer address, and its size are stored in the buffer.

After storing the system call information, the proxy notifies the

host process of the issuance of the system call using the notification

function of the RDMA hardware. Specifically, NetTLP hardware has

the ability to notify a remote machine via NIC when the software

accesses the physical memory region specified by the base address
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register (BAR) 4 in the configuration space. When the remote

machine is notified, a callback function registered in advance to

a library called libTLP is called. We use this callback function to

allow the proxy to notify the host process. Note that we did not

adopt the option to write the system call information directly to

the BAR 4 area without using the in-memory system call buffer,

because the one-word write to the BAR 4 area generates a callback

each time, which incurs an extra overhead.

There are two possible places to implement proxies: kernel space

and user space. In general, kernel-space implementations require

a transition cost to kernel space while improving compatibility,

and user-space implementations are the opposite. However, our

current implementation requires access to the BAR 4 region of the

NetTLP device. Therefore, this time we implemented the proxy in

kernel space for compatibility, simplicity, and safety. However, it

is possible to implement it in user space by using secure RDMA

hardware with no extra features.

4.3 Host Process

The host process is an ordinary process that runs on the host OS. As

described above, the host process registers a callback function for

libTLP in advance so that it is called when the proxy notifies. In the

callback function, the host process accesses the system call buffer in

the isolatedmachine with read RDMAusing the predefined physical

address. Then, it inspects the system call number and determines

the handling of the system call.

The subsequent behavior of the host process depends on the

type of system call. For file and network access, the host process

allocates a temporary buffer in the host process after performing a

security check. In the case of a write or send system call, the host

process first reads the data as a temporary buffer with RDMA from

the buffer in the isolated process specified by the argument of the

system call. At this time, since the argument of the system call is

specified by the virtual address of the isolated process, the host

process performs address translation from the virtual address to the

physical address. The host process then issues the same system call

to the host OS as specified and performs I/O. In the case of a read

or receive system call, the host process writes data to the buffer of

the isolated process with RDMA after the system call is returned.

Finally, the host process writes the return value to the system call

buffer with write RDMA.

For thread and memory management, such as fork(2),
execve(2), and mmap(2), the host process needs to manipulate

the CPU contexts and page tables of the isolated process. Therefore,

the host process cooperates with a small piece of proxy code to

update the CPU registers and some data structures on the isolated

machine. For simple administrative system calls, such as getpid(2),
the host process handles the system call directly without the help

of the proxy or the host OS.

4.4 Implementation Status

Our implementation is still in an early stage; currently, we have

implemented approximately 30 system calls, including open(2),
read(2), and mmap(2). However, these are enough to run simple

applications, and we plan to implement more system calls to run

more complicated applications.

Figure 2: Overhead of syscalls

5 PERFORMANCE EVALUATION

This section presents experimental results of a preliminary perfor-

mance evaluation of machine-level isolated execution of processes,

using micro benchmarks and simple real-world applications. For

comparison, we also measured the performance of processes in our

environment and a typical single-machine environment.

We conducted our experiments using two machines with an

Intel i7-9700 CPU and 32 GB of memory. We ran our thin OS on

the isolated machine and Ubuntu 18.04 on the host machine. For

the RDMA hardware, we used a Xilinx KC705 with a 16 Gbps PCIe

Gen 2 4-lane link on the isolated machine and connected with the

host machine via 10 Gbit Ethernet.

5.1 Micro benchmark

We implemented a micro-benchmark program that measures the

number of system calls that can be executed in one second. We

measured the performance of dup(2), read(2) and write(2)
system calls. Since the dup(2) system call could not be batched

or cached [17], we can measure the pure overhead of executing

the system call. We also measured the performance of I/O system

calls using read(2) and write(2) system calls. In the read(2) and
write(2) system call experiments, we measured 64, 256, 1024, 4096

and 8192 bytes of read and write.

Figure 2 shows the relative overhead of each system call in our

environment compared to the single machine environment. The

overhead in the dup(2) system call was 943.3x. It compares the cost

of the CPU system call instruction versus the cost of the RDMA

call, which is the worst-case overhead.

In both write(2) and read(2) cases, the overheads basically

decreased as the byte size increased. In the single-machine environ-

ment, disk I/O latency increased, and the number of system calls

per second decreased significantly as the byte size increased. It is

also true in our environment, but since RDMA latency is much

longer than disk I/O, system call performance does not decrease as

much as in the single-machine environment, even with larger byte

sizes. Thus, the relative overhead gradually decreases as byte size

increases.

In our environment, the number of read(2) executed per

second did not decrease as much as write(2) even when the
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Figure 3: Overhead in OpenSSL

byte size increased. It is because read(2) performs write RDMA,

which sends data without a completion message from the remote

machine, while write(2) performs read RDMA, which requires

a completion message from the remote machine after the data

transfer. Therefore, as byte size increased, the overhead of read(2)
decreased significantly compared to that of write(2).

In the single-machine environment, the number of write(2)
executed per second was lower than read(2) in general. It is

due to our micro benchmark code. In this experiment, write(2)
continues writing data to the same file, and read(2) continues

reading data from the same file. Therefore, write(2) periodically
needs to update metadata and flush data to disk in case of a crash,

so write(2) was not executed as many as read(2). On the other

hand, the number of write(2) is not so different from the number

of read(2) in our environment because of the high RDMA latency.

As a result, the relative overhead was higher for read(2) than for

write(2).

5.2 Application benchmark

We evaluated the performance on two real-world applications,

OpenSSL and SQLite.

5.2.1 OpenSSL. We evaluated the performance of OpenSSL in our

environment using the openssl speed command. This command

measures how much encryption can be done within a fixed time

using various algorithms, and it is done on 16, 64, 256, 1024, and

8192 block sizes. We extracted the results of aes-256-cbc, des-ede3,

and sha256. We linked the files statically since running dynamically

linked files on our thin OS is unstable yet.

Figure 3 shows the result. As shown in the figure, little perfor-

mance degradation occurs in all cases, and increasing block size

did little to change the results. It is because few system calls are

needed to execute OpenSSL.

This result indicates that when an application is CPU intensive

and does not need to issue many system calls, our environment can

achieve practical performance with higher security than a typical

process environment on a single machine.

5.2.2 SQLite. We measured SQLite performance in our environ-

ment using the speedtest1 [5] benchmark workload. This bench-

mark measures the time of a variety of operations in the database.

Since our thin OS does not yet support multi threads, we compile

SQLite and this benchmark using -DSQLITE_THREADSAFE=0 and

-DSQLITE_OMIT_LOAD_EXTENSION options and use the static link.

Figure 4 show the result. The overheads were quite different for

different query identifiers. There are small overheads in 110, 120,

320, 400, 410, 500, 510, and 520, which are less than 10x. In particular,

the lowest overhead is 1.02x (Query Identifier: 510). These queries

are mainly REPLACE or SELECT. On the other hand, there are

considerable overheads in 200, 240, 250, 270, 280, and 310, and

they are more than 100x. Among them, the highest overhead is

263.15x (Query Identifier: 270). These queries are mainly DELETE

or UPDATE.

6 SECURITY EVALUATION

The most important feature of our approach is the isolation

of machines, which means the separation of CPU and memory

between the user and kernel space. Therefore, our approach can

prevent attacks assuming that the CPU or memory is shared

between the user and kernel spaces. In this section, we discuss

some case studies of attacks that our approach can prevent.

6.1 CPU attacks

Meltdown [52] or Spectre [38] are famous side-channel attacks that

exploit speculative execution, and there are other similar attacks [2–

4]. These attacks allow attackers to get sensitive data from the cache.

Such attacks can be prevented by some mitigation techniques, such

as using memory fence instructions appropriately. Still, it is difficult

to address the root cause of the problem, and new side-channel

attacks may be discovered in the future even if they are addressed.

Our approach can prevent such attacks. They are caused by

sharing the CPU between user or kernel processes. In our approach,

the isolated and host processes do not share the CPU. Thus, the

cache on the CPU of the isolated machine contains only data from

untrusted applications or that of the thin OS with little room to be

attacked. Since the host machine’s data do not reside in the CPU

cache of the isolated machine, an attacker cannot take advantage

of CPU characteristics to retrieve sensitive data.

6.2 Memory attacks

In our approach, the isolated process does not share physical

memory with the host machine. Thus, we can prevent attacks that

assume that the attacker’s process and the target data reside in

the same physical address space. An example of such an attack is

arbitrary code execution through memory corruption attacks such

as buffer overflows. For example, the ret2usr attack can exploit a

kernel vulnerability to execute user code by hijacking the control

flow [35]. CVE-2017-7308 [1] reports an example where the kernel

does not check the data size, allowing a local user to gain kernel

privileges or cause a DoS.

We can also prevent side-channel attacks on memory. For exam-

ple, the RowHammer [59] attack exploits the electrical interaction

between memory cells to destroy nearby data by successively

accessing the same address in the DRAM. This attack can gain

kernel privileges [70], but it is difficult to address it on a single

machine fully. We can definitively prevent such an attack by

separating the physical address space.
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Figure 4: Overhead in SQLite

7 RELATEDWORK

7.1 Isolated Execution

Numerous process-level sandboxes have been studied in the past [7,

11, 26, 27, 30, 36, 66]. These studies use OS-level mechanisms to

intercept system calls and use OS-level protection, such as processes,

to isolate and protect the reference monitor. However, these

studies assume that we can trust OS-level isolation with CPU-level

protection, and vulnerabilities in OS isolation mechanisms directly

lead to the compromise of the reference monitor. In addition,

process-level sandboxes are difficult to defend against side-channel

attacks.

OS-level containers provide isolated execution environments

for a set of processes. However, the isolation between containers

relies on the host OS; the host OS is TCB, so if the host OS is

compromised, the isolation is also compromised [28]. Although

some studies improve container security by reducing the attack

surface of the host OS [28, 83], it is still difficult to prevent attacks

that exploit commonly used system calls.

VMs can achieve more robust isolation than containers [56].

However, as general-purpose hypervisors continue to grow in size,

attack surfaces and TCBs are also increasing. Although there have

been many studies to reduce the TCB size of the hypervisor [57,

77, 85], hypervisors of a certain size are still necessary to achieve

isolation between VMs. In addition, countermeasures against side-

channel attacks remain ongoing.

TEEs with CPU support, such as Intel SGX and Arm TrustZone,

provide strong isolation [10, 63]. However, hardware-based TEEs

also have various vulnerabilities due to their complexity. For

example, Xu et al. [88] showed that a large amount of information

could be extracted from an enclave using page faults. Bulck et

al. [14] demonstrated that the untrusted OS could infer page access

by an enclave without using page faults. Thus, achieving complete

isolation at the CPU level has become difficult.

Co-processors are equipped in many practical systems and are

also used in several studies to run additional security applica-

tions [76, 92]. Our approach is similar to these in that it offloads

security-critical processing to a separate processor. However, our

approach differs in using full-fledged CPUs connected via RDMA

to run the main processing, such as applications and OS kernels,

rather than additional processing.

Intel PKU helps realize in-process isolation [81, 82], which can

provide isolated environments with a faster switch than inter-

process isolation. However, Connor et al. [20] show vulnerabilities

in existing PKU-based sandboxes. The study of Cerberus [82] shows

that recent PKU-based schemes have security issues and address

them in their new framework. Thus, establishing the security of

PKU is still a work in progress.

DlibOS [54] exploits many-core processors with network-on-

chip to provide strong isolation among applications and I/O stacks

with low-latency communication. However, because DlibOS makes

isolated programs coexist on processors that share a last-level cache

and physical memory, protection against side-channel attacks such

as transient execution and memory interference is not necessarily

sufficient.

Distributed operating systems [12, 80] and serverless comput-

ing [50] allow for coordination between applications running on

different machines. They can be considered to provide isolation

between applications using physical machines but do not provide

isolation between applications and system software.

7.2 TCB and Attack Surface Reduction

The OS and hypervisor fields have studied TCB and attack surface

reduction.

One practical approach to TCB reduction is decomposing mono-

lithic structures into microkernel-like structures. For example, in

hypervisors, Xoar [19] breaks Dom0 of Xen functions into multiple

components, each with a single purpose. Nexen [72] decomposes

Xen and provides each VM with VM-slice, which has a part of the

Xen functions and the corresponding private data. DeHype [86]

decouples many of the KVM functions from the core part and

runs them as libraries in each VM. HypSec [48] divides KVM

into the small trusted corevisor and the other untrusted hostvisor.

NOVA [77] decomposes the hypervisor and implements virtual-

ization functions at the user level, like microkernels. The OKL4
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microvisor [34] also implemented a microkernel-like hypervisor

with para-virtualization. In the field of OS, PerspicuOS [22] takes

the approach of nesting the kernel; the inner kernel is responsible

for memory protection, and the outer kernel is treated as untrusted.

Another approach is to limit the purpose and reduce the

functionality. CloudVisor [90] exploits nested virtualization to

introduce a small security hypervisor under the existing hypervisor.

Min-V [62] removes virtual devices that are not critical in cloud

environments. Firecracker [8] targets container applications and

removes functionalities such as legacy BIOS and device emulation,

VM migration, and support for arbitrary kernels. LibraryOS and

Unikernels [13, 40, 53] implement only the minimal functionalities

necessary for specific applications. Kernel debloating [6, 33, 91]

restricts access to the kernel for each application based on dynamic

analysis.

Reducing sharing is also effective in reducing the attack surface.

For example, Szefer et al. [79] have eliminated hypervisor attack

surfaces by pre-allocating hardware resources. SPLIT-KERNEL [44]

runs untrusted applications on a hardened kernel and trusted

applications on a regular unmodified kernel.

Unfortunately, these approaches remain privileged software on

the same machine as isolated execution environments.

8 FUTUREWORK

We need to implement more system calls and evaluate the per-

formance in more applications. While this paper focused on

the evaluation of file I/O system calls, we need to measure the

performance of system calls related to memory management such

as mmap(2). Also, although the current proxy implements some

memory management functions for the host process, it is possible

to implement most of them with RDMA alone. We need to analyze

the impact of such division of roles between the proxy and the host

process on performance and security.

Although the performance of the system call level isolation

approach is promising for some applications and workloads, as

shown in Section 5, the system call overhead is still orders of

magnitude higher than traditional systems. Therefore, we need

performance improvement techniques to overcome this overhead.

Software-based techniques include asynchronous and batched

system calls. FlexSC [75] has already proposed and proven the

effectiveness of asynchronous and bached system calls with

exception-less system calls, and we can apply similar techniques

to our approach. Hardware-based approaches include improving

RDMA performance through better FPGA implementation and

utilizing new hardware connected via lower latency networks.

Moreover, since there is no noise due to hardware interrupts on

the isolated machine, we can expect further performance gains for

some CPU-intensive applications by exploiting this characteristic.

Interface design can also have a significant impact on overhead.

In this paper, we have attempted an approach that uses system calls

as the interface between the isolated and the host machines, which

has the advantage of simplicity and ease of application to existing

systems. However, RDMA communication is still much slower than

context switches in the CPU, and the performance is significantly

degraded when system calls are issued frequently. Therefore, it is

essential to use or design an interface that can reduce the frequency

of calls as much as possible.We are currently experimenting with an

approach that uses virtio as the interface between the isolated and

host machines. However, designing a more appropriate interface is

also future work.

Protection of the host OS is also an issue, as discussed in Section 3.

Files and network I/O from the isolated process can be implemented

by forwarding them directly to the host OS, but in this case, there

is a risk of compromise if a vulnerability in the host OS is exploited.

In this regard, in addition to applying existing filtering and debloat

techniques, another approach is to implement OS functions in user

space using a library OS.

Finally, this time we assume an attack from the isolated process

to the host machine, but not from the host process to the isolated

process. However, if the host machine is compromised, the data on

the isolated machine cannot be protected because the host machine

can easily read and write data on the isolated machine using RDMA.

Therefore, to prevent such attacks from the opposite direction, we

need protection mechanisms that can ensure confidentiality and

integrity, e.g., by taking advantage of TEE-like environments. We

are considering using AMD SEV or Intel TDX to run the entire

physical machine as a TEE, which would solve the confidentiality

issue.

9 CONCLUSION

This paper describes the design and implementation of a machine-

level isolated execution environment with system call boundaries.

We achieved stronger isolation than CPU-level protection by run-

ning untrusted applications on isolated machines and transferring

system calls onto physically isolated host machines. By utilizing

RDMA hardware with capabilities such as software independence,

full physical address access, unidirectional access, and notification,

we were able to achieve secure yet low-latency physical machine-

to-machine communication, bringing the machine-level isolation

environment closer to practical performance. Experimental results

show that while the overhead of a single system call is still very

high, the overhead for some workloads in SQLite is practical,

and there is almost no overhead in OpenSSL. Future work will

include further performance evaluation, performance improvement,

interface design studies, host OS protection, and isolated process

protection.
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