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ABSTRACT

Data visualization aims to effectively communicate quantitative
information by understanding which techniques and displays work
better for different circumstances and why. There are a variety of
software solutions capable of generating a multitude of different
visualizations of the same dataset. However, data visualization ex-
poses a large space of visual configurations depending on the type
of data to be visualized, the different displays (e.g., scatter plots,
line graphs, pie charts), the visual components to encode the data
(e.g., lines, dots, bars), or the specific visual attributes of those com-
ponents (e.g., color, shape, size, length). Researchers and developers
are not usually aware about best practices in data visualization, and
they are required to learn about both the design practices that make
communication effective and the low level details of the specific
software tool used to generate the visualization. This paper pro-
poses a software product line approach to model and materialize
the variability of the visualization design process, guided by fea-
ture models. We encode the visualization knowledge regarding the
best design practices, resolve the variability following a step-wise
configuration approach, and then evaluate our proposal for a spe-
cific software visualization tool. Our solution helps researchers and
developers communicate their quantitative results effectively by
assisting them in the selection and generation of the visualizations
that work best for each case. We open a new window of research
where data visualization and variability meet each other.
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1 INTRODUCTION

In digital transformation scenarios in which we are now immersed,
such as Cloud Computing, Internet of Things, or Cyber-Physical
Systems, a large amount of data is produced, stored, and ana-
lyzed [63]. Quantitative information forms the core data of what
organizations and practitioners (e.g., researchers, scientists) must
know to exploit and communicate their results and advances. The
quantity and diversity of the data make it difficult to extract and
present relevant information for end-user consumption. Data vi-
sualization [31] is an interdisciplinary field that deals with visual
representation of data to effectively communicate information.

However, data visualization exposes a large space of possible
visual configurations depending on the type of data to be visualized,
the data relationships, and the message we want to transmit [17, 32].
The use of graphs and tables is a common practice in organizations
today, becoming the fundamental vehicle to represent quantita-
tive information [19]. There exist considerable variations in graphs
and tables (e.g., scatter plots, line graphs, bidirectional tables) that
correspond to different quantitative relationships of the data (e.g.,
correlation, ratio, ranking, hierarchical), and each of these varia-
tions can be paired with the visual components and techniques
(e.g., points, lines, bars, boxes) that present them most effectively.
These visual components can be further configured to improve
their visual perception through multiple visual attributes such as
form attributes (e.g., length, width, orientation, shape, size, enclo-
sure), color attributes (e.g., hue, intensity), or position attributes
(e.g., 2D, 3D position), among others. Both graphs and tables have
been developed over time to the point that visualization experts
now thoroughly understand which works better for different cir-
cumstances and why [17, 61]. Nevertheless, few practitioners have
yet learned the design practices that make the use of graphs and
tables effective [12, 43]. Evidence of this fact in the form of count-
less poorly designed graphs and tables is visible in the literature
(Section 2). For example, pie charts are widely used for visual repre-
sentation, despite the fact that they are not recommended for data
that represent a relationship between a part and a whole, because
there exists evidence of cognitive perception that indicates that the
human eye is not well prepared to detect differences in the size of
the angles; and in this case, bar graphs are better options for easy
reading and comparing data [19].

Moreover, there are a variety of software solutions capable of
generating a multitude of different visualizations of the same data.
Examples of languages and tools used in data science activities
and industry digital transformation are Data-Driven Documents
(D3.js) [7] for web engineering, Grafana [10] for cloud computing,
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Pgfplots and TikZ [57] in BKIEX for research, Ggplot2 [65] in R and
Matplotlib [26] in Python for data analysis, just to mention a few.
These options offer little support to guide users or developers in
determining the most correct way to visualize the data, that is,
how to decide which visualization is the most appropriate for a
dataset with certain properties. The problem increases with the
huge number of configurations regarding the visual components
and attributes that those libraries offer and that may overwhelm the
user, requiring considerable technical skill to know the low-level
details of the software library used to generate the visualization.

In this paper, we propose a software product line (SPL) [51] ap-
proach to model and materialize the variability of the visualization
design process (Section 3). The visualization design process [63] is
concerned with the design practices, development, and application
of visual representation of data assisted by computers to display the
information for accurate and efficient interpretation by the reader.
We make the following contributions:

e We synthesize the best practices of the visualization design pro-
cess that have been learned through many years of research and
real-world trial and error by trailblazers [17, 19]. To do so, we
encode the variability of the visualization knowledge regarding
the best design practices in feature models and follow a step-wise
configuration [14] approach that allows configuring different
displays, visual components, and attributes in a specific software
visualization library or tool, so that non-experts in visualization
can easily decide the best representation for their data (Section 4).

e We materialize the variability of visualization designs by au-
tomatically generating effective visualization implementations
using existing software solutions. To do so, we rely on template-
based code generation [56] to resolve the variability of the vi-
sualization at different levels of abstraction, so that users and
developers can build effective graphs without a deep understand-
ing of the low-level details of each visualization tool (Section 5).

e We provide an implementation of our SPL approach and ap-
ply it to four practical scenarios to generate visualizations that
take into account the best design practices to communicate a
quantitative message (Section 6).

Although there are several works discussing the best visualiza-
tions for SPL artifacts [38] (e.g., visualization of feature models),
to the best of our knowledge, there is no approach that manages
the variability of the visualization design process (Section 7). Our
solution helps practitioners communicate their quantitative data
effectively by assisting them in the selection and generation of the
visualizations that work best for each case. We envision that this
contribution can open a new line of research where data visualiza-
tion and variability management, analysis, and implementation can
benefit of each other (Section 8).

2 UPBRINGING DATA VISUALIZATION

This section presents the main concepts of the visualization design
process and the best design practices, motivating our approach.

2.1 The visualization design process

The visualization design process [31] is concerned with the design
practices, development and application of visual representation of
data to effectively communicate information. A formal model of
the visualization design process is proposed by Walny et al. [63]

and includes five main stages (Figure 1): (1) conceptualization of
the vision and goals of the project, as well as the dataset; (2) anal-
ysis and characterization of the data to be visualized including
understanding the data types, amounts, and relationships; (3) ab-
straction and encoding design steps that encompass creative design
and data mapping with the required representation, resulting in
a visualization design concept (or visualization design documen-
tation); (4) implementation of the visualization according to the
design performed in the previous phases and using a specific soft-
ware visualization library; and (5) deployment of the visualization
for public use, including its maintenance and data updates. In this
paper, we focus on stages 3 (Visualization Design) and 4 (Visual-
ization Development) highlighted in Figure 1 which are the most
interesting phases due to their complexity in variability.

Datasets, vision of data ion design
and goals characteristics documentation

L ERIE Data | ®Visualization
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Figure 1: Stages of the data visualization design process [63].
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Informally, data visualization maps values to visuals, turning
numbers into graphs to convey a story or an idea as efficiently as
possible. According to [19], tables and graphs are the main visual-
izations (aka displays) to structure and communicate quantitative
information. Due to the visual nature of graphs, graphs expose a
high degree of variability, requiring a number of unique design
practices in contrast to tables. Therefore, in this paper, we focus
mainly on the visualization of graphs.

Visualization design of graphs. Graphs display relationships
(e.g., time series, ranking, part-to-whole, distribution) in quantita-
tive information by giving shape to those relationships. Multiple
structural forms of graphs can be used to display each relationship
by encoding quantitative values as points (e.g., dot plots, scatter
plots, strip plots, bubbles), lines (e.g., line graphs that may also
include points, frequency polygon graphs), bars (e.g., histograms,
table lens), boxes (e.g., box plots with vertical or horizontal orienta-
tion), and 2D and 3D shapes (e.g., pie charts, donut charts, radar
charts). Deciding the best value-encoding object and graph type for
each kind of relationship requires to understand the specific types
of relationships that graphs can display [19]. For instance, data with
a correlation relationship should be displayed by encoding values
with points as a scatter plot [19], but the user needs to be able to
identify that the message she wants to transmit is a correlation in
the data (e.g., a causal relationship) in contrast to a deviation or a
distribution relationship. Furthermore, several visual and textual
components work together in graphs to present quantitative infor-
mation. Design involves not only choosing the primary components
that are used to construct the graphs (i.e., points, lines, bars, plots),
but also designing the secondary components and non-data com-
ponents to display the information (e.g., axes, trend lines, reference
lines, annotations, scales, tick marks, grid lines, legends, etc.), as
well as determining the visual attributes of each component such
as its form (e.g., length, width, orientation, size, shape, enclosure),
its color (e.g., hue, intensity), or its position (e.g., 2D position).

Visualization development of graphs. There are a variety of
software solutions to develop and generate a visualization of data
such as Matplotlib [26], Ggplot2 [65], Pgfplots [57], Grafana [10].
Each tool requires considerable technical skill by the users to know



its low-level details in order to generate an efficient visualization.
Moreover, these tools expose a colossal number of options regarding
the visual components and attributes to develop the visualization,
but they offer little support to guide users or developers regarding
the most correct way to visualize the data.

2.2 Best design practices in data visualization

Despite the high number of possible options in the design and im-
plementation of visualization to represent data, only a few of the
configurations are appropriate to effectively communicate infor-
mation. For example, only graphs based on points, lines, bars, and
boxes are recommended (with rare exceptions) [19] because they
rely on visual attributes that can be easily and accurately perceived,;
while 2D and 3D shapes (e.g., pie charts, donut charts) fail at data
representation, mainly due to perceptual reasons, even though their
high popularity [19]. In this regard, many fields of scientific study
have contributed to the understanding of visual perception and
have applied it to visual design [6, 9, 12, 19, 44, 47, 61]. A set of
patterns known as the Gestalt Principles of Visual Perception [23]
uncovered how people perceive patterns, forms, and organizations,
revealing that people tend to group objects in particular ways.
Many of these findings have been applied in the design of tables
and graphs [9, 19, 47]. For instance, the principle of proximity [23]
establishes that objects that are close to each other are perceived
as belonging to a group, and thus, tables can be arranged better
in a particular direction without the need of using horizontal or
vertical rules to delineate rows or columns, improving the data-
ink ratio [19] (i.e., the amount of ink that presents important data
compared to the total amount of ink used to present the display).
Another example is the principle of similarity [23] that establishes
that similar objects in color, size, shape, or orientation tend to be
grouped together; and thus, shapes with symbols keeping their
interiors empty of color (circles, squares, and triangles) are easier
to distinguish in graphs. Moreover, some visual attributes consid-
erably affect the visual perception of the display [12], such as the
color, where there are a list of nine hues (i.e., gray, blue, orange,
green, pink, brown, purple, yellow, red) that meet the requirement
of distinctness, and therefore they are easy to recognize and distinct
enough to work well together; but its selection is challenging be-
cause red and green in combination can be difficult to differentiate
for colorblindness people.

Deciding whether to use a table or a graph as a display, the
best components to build such a display, and the visual attributes
or those components, requires knowing the principles of visual
perception behavior and its application to graphical communica-
tion [43, 58], but also understanding the specific types of relation-
ships that each visualization can display [19]. However, yet few
of the practitioners have learned the design practices that make
the use of tables and graphs effective. Evidence of this fact in the
form of countless poorly designed tables and graphs is visible in
the literature. Concretely, in Figure 2 and Figure 10 (in Section 6),
we illustrate some of the design problems in visual representations
extracted from the literature. A summary of the best design prac-
tices for visualization to decide the best display according to the
data relationships and communicate the information effectively is
shown in Tables 3 and 4 in Appendix A.

I The content information inside these graphs and tables are not relevant in our paper.

(a) Feature model displayed in the Glencoe online tool [2]. The dark hues used do
not meet the requirement of distinctness with features’ colors fading more into the
background. Also, green and red colors for “requires” and “excludes” constraints are
difficult to distinguish for colorblindness people. In contrast, black features over a

white background and different line styles for constraints would be easier to read.
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(b) The radar chart at the left (taken from [19]) is a graph type often available in visu-
alization tools, but it does not present information clearly, accurately, and efficiently,
mostly because of perceptual reasons. The same nominal comparison of sales channels
can be better represented with the bar graph at the right-hand side (from [19]). The
bar graph is easier to read since positions along a quantitative scale are much easier
to compare when they are laid out linearly along a single vertical or horizontal axis.
Also, a bar graph supports additional meanings to be displayed such as ranking the
items, but the radar char does not because it is not clear where the information begins

and ends, or whether it should be read clockwise or counterclokwise.
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(c) Comparison of counting time solutions of three solvers [45]. The table at the
left (from [45]) contains a high ratio of non-data ink hindering the important data.
The same table (at the right) considers the principle of proximity [23] to reduce the
unnecessary rules (non-data ink) and enhance the relevant information.

Figure 2: Examples of visualizations, extracted from the lit-
erature, that suffer from design problems’.

In the next section, we propose an approach to model and manage
the variability of the visualization design process.

3 AN SPL FOR DATA VISUALIZATION

Our approach consists of an SPL (Figure 3) to model and manage
the variability and encoding the best practices of the visualization
design process. We follow the classical SPL framework [51] that
separates the domain and the application engineering processes,
and distinguishes between the problem and the solution spaces.
In the domain engineering process, we analyze the knowledge
and variability of the visualization design process encoding them
in feature models (top left of Figure 3), and prepare the reusable
and variable artifacts to be used in multiple visualizations in terms
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Figure 3: SPL for the visualization design process.
of templates for the different visualization software libraries (top

right of Figure 3). In the application engineering process, we specify
configurations for the visualization according to the stakeholder’s
requirements (bottom left of Figure 3) and generate a final display
for a specific software library (bottom right of Figure 3).

Since we are interested in the separation of the visualization
knowledge and variability from the implementation in a specific
software library, we will distinguish the perspectives of the prob-
lem and the solution space in the following sections. The problem
space takes the perspective of stakeholders (e.g., researchers, data
analysts) and the problematic of designing visualizations that ef-
fectively communicate quantitative information about their data
(Section 4). In contrast, the solution space represents the devel-
oper’s perspective, including the generation of the visualization in
a particular visualization software library (Section 5).

4 VARIABILITY MODELING AND
CONFIGURATION IN VISUALIZATION

To address the problem space of our SPL, we first analyze and
extract the knowledge and best practices of the visualization design
process that have been learned through many years of research and
real-world trial and error by trailblazers. To do so, we analyze the
literature on visualization design techniques and best practices [9,
17,19, 32, 47, 58], and synthesize a set of feature models that encode
this knowledge. Then we configure the feature models following a
step-wise configuration technique [14].

Figure 4 illustrates our approach to model and configure the
variability of the visualization design process. Following the visual-
ization design and development phases presented in Section 2, we
refine the modeling of variability [52, 53] into three fundamental
steps in the design of a visualization identified by Few [19] and an
additional step for the development of the visualization: (1) deter-
mine the message to display; (2) select the best means to display the
information; (3) design the display to show the information; and
(4) select the implementation for the visualization. Each step has a
particular goal in the design and development of the visualization,
and thus, we encode the knowledge and variability of each step in
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Fig_ure 4: Our approach to model and configure the variability
of the visualization design process.
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Figure 5: Step 1. Encoding the knowledge to select a graph or
a table to communicate the information.

1. Determine the information you need to display.

MessageToDisplay Display

TS

separate feature models. Then, feature models are configured step
by step [14].

Step 1. Determine the information you need to display (Fig-
ure 5). The first step is to determine the message to be displayed
from the data, and consequently choose the best medium of com-
munication (i.e., a table or a graph). This requires knowing the
different roles of graphs and tables when presenting quantitative
information. As stated by Few [19]: “tables make it easy to look
up individual values”, while “graphs are used to display relation-
ships among and between sets of quantitative values by giving them
shape”. Complete knowledge of whether a graph or a table is more
appropriate is available in Appendix A and has been encoded in
the feature model of Figure 5. This feature model allows deciding
whether to use a table or a graph according to the message you
want to transmit. The feature model encodes the different types of
message as abstract features, and the relations between the message
and the best concrete medium of communication to show that mes-
sage (a table or a graph) as cross-tree constraints. To configure this
feature model, the user only needs to select the message she wants
to display, resulting in the best medium to display the message: a
graph or a table. As a result, a single configuration is obtained that
will guide the next step in the visualization design process.

Step 2. Select the best means to display the information (Fig-
ure 6). In the second step of the visualization design process, the
goal is to select the best means to display the information in terms
of the specific chart type (in the case of graphs) or structural type
(in the case of tables) according to the relationships of the data
to communicate. As in step 1, the available knowledge extracted
from the literature is summarized in Appendix A and has been
encoded in the feature model of Figure 6 for the graphs. Figure 6



2. Select the best means to display the information.
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Figure 6: Step 2. Feature model to determine the best graph type according to the data relationship.

3. Design the display to show the information simply, clearly, and accurately.
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Figure 7: Step 3. Variability of the visual component-level graph design.

specifies the fundamental variations of graphs in terms of chart
types (concrete features in gray) that correspond to different quan-
titative relationships (abstract features in white). Knowledge about
the type of graph that presents each quantitative relationship more
effectively is encoded in the cross-tree constraints. For example,
to represent a nominal comparison in the data, it is preferable to
use bars by means of either a vertical or a horizontal bar graph;
but when then quantitative values of the scale do not begin at zero,
using dot plots is recommended [19]. To help the user determine
whether her quantitative message involves a particular data rela-
tionship or another, we also encode a set of keywords and phrases
that are commonly used to identify each relationship [19]. So, the
user can first state the message in writing and then look to see
whether she used any of the keywords to transmit the message.
For example, the message likely involves a time series if it includes
any of the following words: change, rise, increase, fluctuate, grow,
decline, decrease, trend; while the following words suggest a cor-
relation relationship: increases with, decreases with, changes with,
varies with, caused by, affected by, follows. The feature model of
this second step is normally configured once for a visualization,
but can be configured multiple times to represent a combination of
displays (e.g., a bar graphs combined with a time series). Here, we

have illustrated how to model the variation on graphs, while the
variations on tables shown in Appendix A are modeled similarly.

Step 3. Design the display to show the information simply,
clearly, and accurately (Figure 7). In this step, we model the
variability of the visual component-level graph design. The goal is
to make the visual objects that encode data prominent, accurate,
and clear to communicate the information. Since tables are slightly
more forgiving of visual design flaws because tables encode data
through the use of verbal language (i.e., text) visually displayed [19],
in this step we focus on the design of graphs. Graphs are constructed
from components that can be divided into three groups: (i) primary
components, that is, the points, bars, lines, and boxes that encode
the quantitative data; (ii) components that serve secondary roles
like the scales, trend lines, tick marks, and so on; and (iii) non-data
components like the axis lines. Figure 7 shows an excerpt from
the feature model that encodes the variability in the design of the
visual components. On the left-hand side of Figure 7, the visual
attributes of the primary components need to be configured for
each set of data, and thus we model the DataSet[1..x] feature as a
multi-feature [1, 13] (aka clonable feature) that allows one to con-
figure the entire subtree as many times as necessary. For instance,
consider a graph representing a comparison of algorithms; each



4. Select the implementation for the visualization.
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Figure 8: Step 4. Development alternatives for visualization.

series of data (or dataset) will represent an algorithm with different
visual attributes (position, form, color) to easily distinguish them.
Note that the variability of the modeled visual attributes includes
only those values that are recommended by visualization experts in
the literature [17, 19, 58], in contrast to modeling all possibilities of
a specific software tool. This allows us to reduce the configuration
space and avoid the selection of features exposed by the tool that
may result in poor design practices undermining the final visual-
ization. For example, we model only those shapes that are easy to
distinguish from one another like circle (O), square (O), triangle
(4), plus (+), and times (X) marks; or those color hues that meet
the requirement of distinctness [19]. Some best practices can be en-
coded as complex cross-tree constraints such as the fact that green
and red colors should not be used in combination because they can
be difficult to differentiate for colorblindness people; therefore, we
explicitly avoid the selection of both colors in different dataset of
the same visualization: (3 DataSet | Green) = (3 DataSet | Red).
In addition, each dataset requires to provide a set of attributes such
as a name to identify the data, the file path to the (.csv) file con-
taining the data, and the column name for the X and Y axes inside
the data file. This is modeled as feature attributes [5] associated
with the DataSet feature. The secondary components (middle of
Figure 7) include several other components of graphs that also pro-
vide information and can be configured such as the scales (linear
or logarithmic), grid lines, annotations, or the legend including its
position, among others [19]. We collapsed some of those features
(...) and omitted others, such as trend lines or reference lines, due
to lack of space. Finally, non-data components (right-hand side
of Figure 7) are axis lines that give graphs dimension, serve as a
container for the data and also provide various possibilities for
configurations, such as the number of axes and their positions. For
instance, under most circumstances, graphs include a single axis
either vertical or horizontal for 1D graphs, or two perpendicular
axes for 2D graphs. The configuration process of the feature model
in this third step results in multiple configurations, one for each
dataset due to the presence of the DataSet[1..x] multi-feature, as
well as due to the possibility of building a combination of displays
from step 2 (e.g., a dot plot with a trend line).

Step 4. Select the implementation for the visualization (Fig-
ure 8). The last step consists of choosing the software library or
tool to produce the visualization designed in the previous steps. The
goal here is to decide the visualization tool depending on the target
audience or the publicity method for the visualization (e.g., research
publication, data analysis, web publication), without the need to
know about the different software solutions available. Figure 8
shows an example of a feature model that exposes four well-known
visualization libraries: pgfplots [57] for research publications in
IKTEX, matplotlib [26] in Python and ggplot2 [65] in R for data

Listing 1: Excerpt of the Jinja2 template for graphs visualiza-
tions in IXTEX using the pgfplots and tikz packages.

1 \begin{tikzpicture}

2 \begin{axis}[

3 title={{ title }},

4 xlabel={{ xaxis_label }}, ylabel={{ yaxis_label }},

5

6 {{ plot_type }},

7 {% if x_log_scale %} xmode=log, {% endif %}

8 {% if y_log_scale %} ymode=log, {% endif %}

9 {% if legend_pos %} legend pos={{ legend_pos }}, {% endif %}
10 1]

11
12 {% for plot in plots %}
13 \addplot+[

14 mark={{ plot.mark 3}},

15 color={{ plot.color }},

16

17 ]

18 tablel

19 x={{ plot.xaxis_column }},

20 y={{ plot.yaxis_column }},

21 col sep={{ plot.separator }},
22 ]

23 { {{ plot.csv_file }} };

2¢ {% if legend_pos %}\addlegendentry{ {{ plot.name }} }{% endif %}
25 {% endfor %}

26 \end{axis}

27 \end{tikzpicture}

analysis, and D3 [7] in JavaScript for publication on the web. The
configuration of this feature model will guide the development of
the visualization, as explained in the following section.

5 VARIABILITY IMPLEMENTATION AND
RESOLUTION IN VISUALIZATION

To address the solution space of our SPL, we first implement the
variable visualization artifacts and then resolve the variability of
those artifacts according to the configurations provided, generating
the final visualization in a particular software library.

In the domain engineering of our SPL (top-right of Figure 3),
we implement and resolve the variability using a template-based
code generation [56] approach. In a template-based approach, a text-
based language (e.g., JavaScript, Python, KIEX) is enriched with
directives to automatically generate custom content. A template
system allows us to reuse static elements (e.g., web pages) while
defining dynamic elements based on parameters. In visualization,
templates support static non-variable content, providing basic struc-
ture and appearance, while the dynamic variable content (the visual
components and attributes) are specified as parameters. Listing 1
shows an example of a variable artifact for visualization using a
template-based approach, concretely using the Jinja2? template
engine. Variable elements are specified between curly braces and
have been highlighted in bold. These variable elements represent
variation points and will be replaced by the selected variants in the
configurations. We choose a template-based approach in contrast
to a pure annotative-based approach [33] for implementing the
variability, because the visualization domain exposes a large set of
variants for each variation point, and therefore, a pure annotative-
based approach (e.g., C preprocessors with #ifdef directives) re-
quires introducing a high number of annotations to represent each
possible variant. In addition, a template-based approach supports
more powerful directives that allow the use of composition-based

29inja2: https://palletsprojects.com/p/jinja/
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Variation point Variants (V)

Feature (f) Handler (h) Feature/Attribute (p) Value (v)
ScatterPlot only marks
LineGraph smooth
ValueEncodingObject plot_type VerticalBars ybar
HorizontalBars xbar
H
]
% XLogarithmic x_log_scale - -
o
a YLogarithmic y_log_scale - -
SouthWest south west
SouthEast south east
LegendPos legend_pos NorthWest north west
NorthEast north east
OuterNorthEast outer north east
§ VisualComponents title VisualComponents.title (provided)
F]
'.'E XAxis xaxis_label XAxis.label (provided)
£
< YAxis yaxis_label YAxis.label (provided)
CircleMark o
» SquareMark square
5 £ Shape plot.mark TriangleMark triangle
2 é PlusMark +
ER CrossMark X
EE
] Gray gray
= Blue blue
Color plot.color
Orange orange
E g DataSet plot.name DataSet.name (provided)
£
é:é DataSet plot.csv_file DataSet.csvfile (provided)
.‘-:g DataSet plot.xaxis_column DataSet.XAxisColumn (provided)
=

Table 1: Mapping model of variation points and variants.

mechanisms [3] such as the substitution and/or replacement of
elements, the assignment of values, or the use of control structures
such as if/elif/else, for-loops, macros, and blocks. For example, the
for-loop in Listing 1 (lines 12-25) iterates over the plots that will
represent each dataset modeled in the feature model of Step 3 (Fig-
ure 7) as the DataSet[1..x] multi-feature. The template engine will
generate a copy of the code between lines 12-25 for each instance
of DataSet[1..x] provided in the configurations.

To map the variability specified in the feature models with the
implementation of the visualizations, we define a mapping model
that relates the features in the feature models with the variation
points and variants in the parameterizable templates.

Mapping features to variation points and variants in visu-
alization artifacts. Pohl et al. [51] define a variation point in the
context of an SPL as “a representation of a variability subject within
domain artifacts enriched by contextual information”, and a variant
as “a representation of a variability object within domain artifacts”.
In our case, the domain artifacts are the code templates in charge of
generating the visualization (e.g., KIEX or Python source code), and
the contextual information are the directives (e.g., finja2 directives,
#ifdef directives) that specify the variability subjects (e.g., plot type,
color, etc.). The associated variability objects will be every variant
(e.g., scatter plot or bar chart for the plot type, or the different color
variants). To simplify the formalization of a variation point, we rely
on the definition of Jacobson et al. [29] who define a variation point
as “one or more locations at which the variation will occur”, and we
formally define a variation point and its variants as follows:

Definition 5.1 (Variation point, variant). A variation point is de-
fined as a 3-tuple (f, h,V):

o fisthe feature in the feature model associated with the variation
point.

e histhe handler (or identifier) of the location in the artifact where
the variation takes place.

o V is the set of possible variants for this variation point. If no vari-
ants are specified for the variation point (i.e., V = 0), the handler
h is processed as a boolean flag (i.e., like a #ifdef directive).

A variant v € V is defined as a tuple (p, v):

e p is the feature or attribute in the feature model associated with
the variant.

o v is the concrete value to be substituted/replaced/assigned to the
handler A of the variation point.

With these definitions, we define a mapping to establish a re-
lation between the feature models specified in Section 4 and the
template-based variable artifacts. Table 1 shows the mapping model
of variation points and variants for the Jinja2 template of List-
ing 1. For instance, when the feature (e.g., ValueEncodingObject)
associated with a variation point is selected in a configuration of
the feature models, the variant chosen in the configuration (e.g.,
ScatterPlot) will be considered to replace its associated value (e.g.,
only marks) in the handler of the template (e.g., plot_type). When
the feature is not selected in a configuration, the variation point
identified by the handler is removed from the template. The same
behavior is applied for those variation points without variants (e.g.,
XLogarithmic). The Jinja2 template engine receives a map structure
of (handler,value) pairs for the variation points whose associated
features have been selected in the configurations of the feature
models. In case of a multi-feature, the value is a list of maps with
(handler,value) pairs that can be traversed with the for-loop direc-
tive in the template (lines 12-25 in Listing 1).

6 VALIDATION

This section illustrates the feasibility and applicability of our pro-
posal by providing an implementation of our SPL for visualization
and applies it to four practical scenarios to generate a visualization
that takes into account the best design practices to communicate a
quantitative message.

To develop our SPL, we rely on the following technologies: (i) the
Universal Variability Language (UVL) [55] to model the variability
of the visualization design process; (ii) FeatureIDE [41] to create the
configurations of the feature models; (iii) the Python framework for
automated analysis of feature models proposed in [21] to manage
and deal with the feature models and configurations; and (iv) the
Jinja2 template engine for Python to implement and resolve the
variability. All artifacts of our SPL, including the feature models
in UVL, the configurations, the Jinja2 templates for the pgfplots
library in IKIgX, the Python scripts to manage and orchestrate the
feature models and configurations, as well as the resources and
visualizations to replicate these experiments are available online3.
In the following, we apply our approach to four scenarios with
different quantitative data and messages to be visualized.

Scenario 1. Let us consider the quantitative data (Table 2) that
contain the number of articles published in the proceedings of
the SPLC, VaMoS, and ConfWS conferences available in the dblp

3https://doi.org/10.5281/zenodo.6474762
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Table 2: Quantitative data for the visualization Scenario 1:
Number of papers in proceedings for the SPLC, VaMoS, and
Conf WS conferences (extracted from dblp [59]).

Year SPLC VaMoS CoanS‘Year SPLC VaMoS CoanS‘Year SPLC VaMoS ConfWS

2000 27 NA NA | 2008 64 17 NA | 2016 51 14 NA
2001 NA NA NA | 2009 48 23 NA | 2017 37 15 NA
2002 24 NA NA | 2010 67 30 NA | 2018 49 17 19
2003 NA NA NA | 2011 58 21 712019 54 17 13
2004 42 NA NA | 2012 41 22 912020 41 25 NA
2005 24 NA NA | 2013 49 21 16 | 2021 37 19 13
2006 43 NA NA | 2014 52 23 13

2007 27 21 NA | 2015 65 16 21

NA: Not available in dblp [59]. SPLC: https://dblp.org/db/cont/splc, VaMoS: https://dblp.org/db/
conf/vamos, ConfWS: https://dblp.org/db/conf/confws.

computer science bibliography [59]. Following the four configuration
steps of our approach (see Section 4), we can generate a visualization
for these quantitative data:

(1) Determine the information you need to display. We are in-
terested in displaying the entire series of values to show how the
number of articles have changed through time or identify trends.
Therefore, we create a configuration of the feature model of Fig-
ure 5 by just selecting the feature EntireSeriesOfValues, which

results in the following configuration: Config_FM1 = {Visualization,

MessageToDisplay, EntireSeriesOfValues, Display, Graph}. As ex-
pected the best communication vehicle for our data is a graph.
Indeed, from Table 2 is difficult to take a overall pattern of the
data. In the configuration, we have highlighted the concrete fea-
tures automatically selected (Graph) and underlined the feature
manually selected by the user (EntireSeriesOfValues). Others ab-
stract features are also automatically selected due to the feature
model relations.

Select the best means to display the information. We want
to display “how the number of articles changes through time”,
so we can easily identify that the data relationship we want
to visualize is a time series. In fact, our message contains the
“change” keyword that help us to identify the time series. To cre-
ate a configuration of the feature model of Figure 6, we select the
change feature which results in the selection of the TimeSeries
feature. At this point, to display a time series, a line graph or
vertical bars are preferable (see best practices in Appendix A).
However, our data (Table 2) contain missing values at some
years either because the conference was not celebrated or be-
cause the data is not available in the dblp [59]. Thus, we se-
lect the MissingValues feature, suggesting us that a dot plot or
a line graph with points are the most preferable representa-
tion. As we are interested in the overall pattern, we also select
the EmphOverallPattern feature, resulting in the configuration:
Config_ FM2 = {Graph, Information, MissingValues, EmphasizeGoal,

2

~

EmphOverallPattern, DataRelationship, TimeSeries, change,

—
w
=

ValueEncodingObject, Lines, LineGraph, WithPoints}; that gives
us the line graph with points as the recommended encoding
objects to display the information.

Design the display to show the information simply, clearly,
and accurately. In the third step, we configure the visual compo-
nents for our display (feature model of Figure 7). We have three
datasets that implies to instantiate the multi-feature DataSet
[1..x] three times, one for each conference (SPLC, VaMoS, and
ConfWS), configuring the visual attributes for each dataset differ-
ently: DataSet1_SPLC = {VisualAttributes, Form, Shape, CircleMark,
Color,Hue,Blue}; DataSet2_VaMoS = {VisualAttributes, Form, Shape,
SquareMark, Color, Hue, Red }; DataSet3_ConfWS = {VisualAttributes,
Form, Shape, TriangleMark, Color, Hue, Brown}. We also set the name,
datafile, separator XAxisColumn, and YAxisColumn attributes for
each dataset accordingly; and select the secondary and non-
data components such as the NorthWest position for the legend,
and set the title and label(s) for the axes; resulting in the con-
figuration: Config_ FM3 = {VisualComponents.title=“Number of
publications in proceedings”,PrimaryComponents,DataSet1_SPLC,
DataSet2_VaMoS, DataSet3_ConfWS, SecondaryComponents, Legend,
LegendPos, NorthWest, NonDataComponents, Axes,
XAxis.title=“Year”, YAxis.title=“Papers”}. Since the feature
model only exposes the recommended variations extracted from
the visualization literature, any configuration of the visual at-
tributes will ensure the best design practices for visualization.

(4) Select the implementation for the visualization. In the last

step, we decide to generate the visualization for a research publi-
cation in IKTEX. We create a configuration of the feature model of
Figure 8: Config_ FM4 = {VisualizationSoftware, TargetAudience,
ResearchPublication, Latex, pgfplots}, which uses the pgfplots
library, and thus, results in the use of the pgfplots template to
generate the final visualization.

With the four configurations provided and the pgfplots template
(Listing 1), we can resolve the variability as explained in Section 5
to generate the visualization of Figure 9: a time-series graph using
a combination of lines and points to effectively encode the quanti-
tative information of Table 2. The lines give the sense of continuity
that is required for displays of time, while the points explicitly
identify the exact position along the line whether the values are
available because our data contain several missing values. We may
remove the points and use only the lines in the case of collecting all
intermediate values (e.g., years 2001 and 2003 for SPLC, and years
2016, 2017, and 2020 for ConfWS). We may also show individual
values as points without connecting them with a line only if the
time-series values were not collected at regular intervals of time
(e.g., every year).

Number of publications in proceedings

T ‘ T T T T T T
60 - |—— SPLC N
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-
% 40 - | —2— ConfWS N
=¥ G\-@/
20 N
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Year
Figure 9: Visualization generated for the Scenario 1: A lines graph with points representing the time series of Table 2.
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Figure 10: Visualizations scenarios, extracted from the literature, that suffer from design problems.
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Figure 11: Visualization for Scenario 2: a bar chart for the
same part-to-whole information as the pie chart of Fig. 10a.
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Figure 12: Visualization for Scenario 3: scatter plot of Fig. 10b
with a different design improving its visual attributes.

In the following three scenarios, we use our approach to improve
three visualizations described in Figure 10 by fixing their flaws and
applying the best design practices encoded in our SPL.

Scenario 2. The pie chart in Figure 10a represents a part-to-
whole relationship about the tool support for the different SPL
processes [25]. We use the quantitative data available in [25], and
create the configurations that result in the visualization of Figure 11.
The recommended display for a part-to-whole relationship is a bar
graph; or a line graph, in case of showing how parts of a whole

Covid-19 incidence in Spain per Region
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Figure 13: Visualization for Scenario 4: a bar chart to compare
the Covid-19 incidence in Spain from map of Figure 10c.

have changed over time, which is not the case. The reason to prefer
encoding a part-to-whole relationship as bars in contrast to a pie
chart is that people can see the differences easily in the bar graph
but with difficulty in the pie chart because the visual perception is
highly tuned for seeing differences among the lengths of objects
that share a common baseline but not well tuned for discerning
difference among 2D areas [19]. For example, we cannot easily com-
pare how much bigger is the “Domain Analysis (DA)” part from the
“Requirements Analysis (RA)” part in the pie chart (Figure 10a) with-
out looking at the numbers on the textual labels. In the bar graph
(Figure 11), we have manually chosen horizontal bars in contrast to
vertical bars because the categorical labels are too long to fit side by
side in vertical bars. Vertical grid lines, as secondary components
in the background, also facilitate quantitative comparison between
parts. Finally, colors do not contribute to this visualization and may
distract (the original pie chart even uses the red and green colors
together); thus, we opt to use the same color for all datasets.

Scenario 3. The visualization in Figure 10b illustrates a corre-
lation relationship between the file size and different formats of
feature models [55]. In fact, a scatter plot is the preferred display
to show a correlation relationship; however, the visual attributes of
the original scatter plot present some flaws such as an over-plotting
problem [19] (i.e., points are hidden or overlapped by other points
to the degree that they cannot be distinguished), and the use of
different scale units on the Y axis. We use the quantitative data
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available in [55] to configure and recreate the display, which results
in the visualization of Figure 12. First, we configure different shapes
that are easiest to distinguish from each other, in contrast to using
the same mark for five of six datasets as in the original display.
Second, we enlarge the graph, decrease the size of the points, and
keep the interior of the points empty of fill color to remedy the over-
plotting problem. Finally, we use a logarithmic scale to maintain
the same unit on the vertical axis.

Scenario 4. In this final scenario, we apply our approach outside
the SPL domain. Consider the visualization of Figure 10c showing
the total incidence of Covid-19 cases per region in Spain [16]. The
map encodes the quantitative values as points of different sizes,
which, despite being perceived as fancy and pretty, is not effective in
transmitting the message about which region has more incidence
than others or in making comparisons between regions [12]. A
nominal comparison like this is better represented with a bar graph.
The configurations of our feature models generate the visualization
of Figure 13. Since we have many regions (19), horizontal bars are
more appropriate to fit the regions’ labels than vertical bars. In
addition, we maintain the same color for all bars as appears on the
map and rank the regions by quantities to facilitate comparisons.
We can observe on the bar graph (Figure 13) that the incidence in
Cataluiia (2,36 million) is much higher than in Madrid (1,64 million),
but this difference is not appreciated on the map of Figure 10c.

7 RELATED WORK

The visualization and SPL research have crossed paths on several
occasions, but from a different perspective than the one presented
in this article. Studies focus on applying visualization techniques in
the context of SPLs [49] mainly for the visualization of feature mod-
els [48], but also to visualize variability and configurations [4, 50],
feature interactions [27], and constraints [39]. Techniques include
the use of colors to visualize variabilities in source code [18, 30],
polymetric views [36] in the form of a variability blueprint for
the decomposition of complex feature models [62], feature rela-
tions graphs (Frogs) for feature constraints [39], cone trees to draw
feature models in 3D [60], or the use of statistics to visualize large-
scale feature models [24], among others. From this perspective,
Lopez-Herrejon et al. [38] present a systematic mapping study of
visualization techniques that have been used for different SPL ac-
tivites. In contrast, to the best of our knowledge, the variability of
the visualization domain has not been studied yet [22].

Several formal processes for visualization design have been pro-
posed [8, 11, 46, 63], such as the one presented in Section 2 by Walny
et al. [63]. Chi [11] also describes a framework to make information
visualization systems easier to develop through the creation of a ref-
erence Data State Model. Munzner [46] provided a four-level nested
model for visualization design and validation that was further ex-
tended in [40] and [42]. Brehmer et al. [8] discussed pre-design em-
pirical methods for information visualization using four illustrative
scenarios, highlighting the methods and challenges unique to the
visualization domain. All of these works expose the need to design
the visualization at different levels as we have done in our approach
in Figure 4 (Section 4), but none of them takes into account the high
variability that exists in the visualization design process. To syn-
thesize variability and best design practices, numerous theoretical

books have been published [9, 15, 17, 19, 23, 32, 47, 58, 64], of which
we have mainly relied on Few [19] because it is the most practical,
presenting the variations, principles and best practices of visual
perception, as well as its application to graphical communication.
Finally, regarding the evaluation of a visualization, there is an
ongoing discussion in the visualization community [34] about the
relevant factors that make a visualization effective, expressive, mem-
orable, aesthetically pleasing, etc. These factors are typically led
by guidelines and model theories [37] of how different data repre-
sentations and interaction concepts are perceived and processed by
human users, requiring qualitative evaluation methods based on
observation and interviews. For instance, in [34], Kurzhals and
Weiskopf adopt the repertory grid methodology in the context
of visualization. The repertory grid is a technique based on the
personal construct theory for identifying the ways that a person
interprets or gives meaning to, in this case, a visualization. The
evaluation of design criteria for visualization can be performed
using automatic algorithms (e.g., computation of visual clutter [54]
and scagnostics [66]), or with structured approaches, such as ques-
tionnaires [20], that involve the human user for a quantitative and
qualitative assessment of the visualization. Isenberg et al. [28] re-
viewed evaluation methods applied in visualization research, based
on a coding scheme and seven scenarios by Lam et al. [35]. Our SPL
can help with the quantitative assessment of the visualization by
identifying those features that should be present in a configuration
to fullfill the quality factors of a visualization (e.g., to be effective).

8 CONCLUSIONS AND FUTURE WORK

We have presented an SPL approach to deal with the high variability
that exists in the visualization design process. Our solution helps
practitioners communicate their quantitative data effectively by
assisting them in the selection and generation of visualizations that
best represent the desired information. The proposed SPL allows
for the configuration of different displays, visual components, and
visual attributes taking into account the principles and best design
practices of visualization experts.

With this contribution, we open a new window of research where
data visualization and variability meet each other, and where several
challenges remain open. It is easy to imagine that more variability
can be found in other parts of the data visualization process, and
therefore finding different options to handle this variability is chal-
lenging. Data visualization is an area of research that is increasingly
active with the current data era we are facing. Data that are related
to computers but also data that are all over different areas ranging
from biology to archaeology. We envision that variability manage-
ment knowledge can be used in this trending area to facilitate the
data visualization process, as we have partially shown in this con-
tribution. In this regard, as part of our ongoing work, we plan to
extend the modeling of other principles and best practices of the
visualization knowledge that cannot be directly encoded in feature
models, such as, for example, the fact that horizontal bars work
better than vertical bars when the categorical labels are too long, as
shown in Section 6, or concepts such as the data-ink ratio presented
in Section 2. We also plan to include an explicit process for the
quantitative assessment of visualizations in our SPL, considering
the factors (e.g., effectiveness) that are typically led by guidelines.
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PRINCIPLES AND BEST DESIGN PRACTICES
FOR DATA VISUALIZATION

Tables 3 and 4 summarize the recommendations in visualization
design to select the best display for graphs and tables according to
the data relationships, extracted from Few [19].

Table 3: Principles and best practices for tables design.

Data relationships in tables

Unidirectional Bidirectional

Quantitative to Categorical (Look-up)

Single set of quantitative values and a single n O
set of categorical items.

Table 4: Principles and best practices for graphs design.

Data relationships in graphs

Time series: Values display how something ® = = =
changed through time.
« Keywords: change, rise, increase, fluctuate, grow, decline, de-
crease, trend.
« BP: Use preferably lines and vertical bars to emphasize on
overall patterns and individual values, respectively; use points as
dot plots only when missing values at time intervals; use boxes
only for distributions changing through time.

Ranking: Values are ordered by size (ascending & o = =
or descending).
« Keywords: larger than, smaller than, equal to, greater than,
less than.
« BP: Use preferably bars; use dot plots when bars cannot be
used because quantitative scale does not begin at zero; use boxes
only when ranking multiple distributions.
Part-to-whole: Values represent parts (propor- 0O [ I | u]
tions) of a whole.
« Keywords: rate or rate of total, percent or percentage of total,
share, accounts for X percent.
« BP: Use preferably bars; use lines to display how parts of a
whole have changed through time.

Deviation: The difference between two sets of & X = m]
values.
« Keywords: plus or minus, variance, difference, relative to.
« BP: Use bars, but always vertical when combined with time
series; dot plots when quantitative scale does not begin at zero;
lines when combined with time series.

Distribution: Counts of values per interval from m " X R
lowest to highest.
« Keywords: normal curve, concentration, frequency, distribu-
tion, range, normal distribution, bell curve.
« BP: Use strip plots to emphasis individual features; use a
frequency polygon to emphasis the overall shape; use bars as his-
tograms to emphasis on individual intervals in single distributions;
avoid bars for multiple distributions; use box plots to compare
multiple distributions.

Correlation: Comparison of two paired sets of ® 0 R u]
values to determine if there is a relationship be-
tween them.
« Keywords: increases with, decreases with, changes with, varies
with, caused by, affected by, follows.
« BP: Use a scatter plot; use a table lens when the audience is
not familiar with scatter plots.

Geospatial: Values are displayed on amap to m " O m]
show their location.
« Keywords: geography, location, where, region, territory, coun-
try, state, city.
« BP: Use bubbles of various sizes on a map; use lines to mark
routes on a map.

Nominal comparison: A simple comparison of & o = m]
values for a set of unordered items.
« Keywords: this is bigger than that, this is the biggest of all,
this is almost twice as big as that, these two are far bigger than
all the others.
« BP: Use preferably bars; use dot plots when bars cannot be
used because quantitative scale does not begin at zero.

Points Lines Bars Boxes

« BP: Use unidirectional tables; bidirectional tables are not
applicable because there is only one set of categorical items.

Single set of quantitative values and the in- n
tersection of multiple categories.
« BP: Unidirectional tables is preferable because of con-
vention; bidirectional tables save space.
Single set of quantitative values and the in- n

tersection of multiple hierarchical categories.
« BP: Use unidirectional tables to clearly display hierar-
chy by placing the separate levels side by side in adjacent
columns; use bidirectional tables if the separate levels of the
hierarchy are not split between the columns and rows.

Quantitative to Quantitative (Comparison)

A single set of quantitative values associated
with multiple categorical items.

« BP: Bidirectional works especially well because the quan-
titative values are arranged closely together for easy com-
parison.

Distinct sets of quantitative values associated
with a single categorical item.

« BP: Use unidirectional tables; bidirectional tables tend to
get messy as multiple sets of quantitative values are added.

m: Most appropriate; K: Appropriate under certain conditions; O: Avoid.

m: Most appropriate; R: Appropriate under certain conditions; O: Avoid.
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