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ABSTRACT
The hybrid dataflow/von-Neumann [1] architectures may differ
in implementations but all follow similar principles: they harness
the parallelism and data synchronization inherent to the dataflow
model, yet maintain the programmability of the von-Neumann
model. In this paper, we raise a new kind of hybrid dataflow/von-
Neumann architectures, which contains TAU (Task Activated Unit)
and SPM [9] (scratchpad memory) components, by which we can
enhance parallel efficiency.We also implement the prototype design,
integrated with peripheral devices and verify the whole system on
FPGA. Finally, we deploy operating system on the hardware system
and profile the performance. The experimental results show that
the performance is improved by 3.07%∼10.32% under the random
data flow graph, the performance of inter-core communication is
improved by 4% and the hardware acceleration effect is achieved.

CCS CONCEPTS
• Computer systems organization -> Architectures -> Paral-
lel architectures -> Multicore architectures; Data flow ma-
chine.;
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1 INTRODUCTION
Since the concept of hybrid dataflow/von-Neumann architectures
have been raised by many computer pioneers, the explorations [3]
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of this kind of machines has been going on for decades. In order to
enhance the efficiency of parallel computation in traditional plat-
forms, the hybrid dataflow/von-Neumann machines insert many
dataflow units, which are in the form of software or hardware, into
the traditional von-Neumann system.

The idea of data flow computing is not abandoned by the indus-
try like the pure data flow execution model, but further penetrated
into the control flow execution model. The mixed heterogeneous
multi-core architecture further improves the efficiency and perfor-
mance of the control flow execution model. For example, CUDA
Programming of GPU integrates data related instructions into an
execution node, and each execution node executes asynchronously.
The condition of execution is whether resources and data are ready.
Therefore, the program can be disordered and executed quickly,
which also reflects the idea of data flow calculation [16]. In addition,
tensorflow [17], a deep learning framework, programmers need to
explicitly describe the relationship between neural network layers,
and construct a data flow graph from finite class operators to reduce
the programming difficulty of the underlying acceleration library.
Even some programming models of streaming processing also draw
on the calculation idea of data flow, such as steam-kernel [14].

At the beginning of the 21st century, aiming at the advantages
and disadvantages of the two execution models, the hybrid execu-
tionmodel of data flow and control flow has become themainstream
direction of this research topic. Researchers [5] have sought to play
a balance between their strengths and complement their weak-
nesses, and proposed data flow architectures such as trips [4], ddm
[19] and task superscalar [20]. Even, FPGA acts as an accelerator
and provides interfaces through software and hardware APIs [21];
Non mainstream solutions based on data flow language description
and automatic generation of multi-core processors in specific fields
through software tools [22] have also been proposed from time
to time. However, the concepts involved in data flow computing
are huge after all. There are a lot of gaps in the underlying chip
design, programming language specification, operating system and
software application development [6], etc. the project research and
development cycle are often very long, so the hybrid execution
model is still on the way to explore.

Under this background, our team design a new kind of hybrid
dataflow/von-Neumannmachine, which innovatively contains TAU
hardware and SPM. TAU is a hardware that can be set by special
instructions, which can serve as activation links among dataflow
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Table 1: Comparison with other data flow processors (’/’: not mentioned in the original paper)

Task granularity ISA Optimize Scene Generality

stream-dataflow [10] Coarse granularity Specific ISA Repeat Pipeline Calculation Wider
Flexflow [11] Fine granularity / CNN Neural Network narrow
SPU Instruction Level Fine

Granularity
RISC Loop Iterative Data Flow

Calculation
Wider

This Work Thread Level Coarse
Granularity

RISC-V Multithread-based data flow wide

tasks. SPM subsystem is used to replace traditional cache system,
with which processor cores can directly communicate each other
through shared memory space at the speed of cache, rather than
the mix of cache and main memory. With the help of TAU and
SPM, the communication between threads can be boost, which can
enhance efficiency of parallel computation.

In this paper, we design and deploy the machine. The physi-
cal machine is based on RISC-V MINI architectures and the OS
is derived from XV6. Our team expand the original RISC-V MINI
architectures from single core into double core, and we also develop
many peripheral devices to get input-output result. We perform
physical experiment on FPGA hardware to test and verify this ma-
chine, during which we collect many data related to performance
and efficiency. In summary, we raise a architecture in our new
concepts, realize it and test its performance.

The RISC-V data flow architecture implemented in this paper
is a multi-threaded programming data flow machine, with thread-
ing level tasks (thousands or thousands of instructions) as nodes,
which are compared with other data flow processors in recent years
as shown in Table 1 .Although RISC-V data flow architecture is
not as granular as SPU’s instruction level in optimizing parallel
performance, it uses RISC-V instruction set which is popular in
recent years, which is easier to process in compilation and facili-
tates scientific iteration. In the optimization scenario, RISC-V data
flow architecture differs from flexflow in that it optimizes paral-
lel computing only for CNN neural networks, but uses a common
thread to describe tasks. In addition, one of the difficulties of data
flow processors is that the corresponding operating systems and
software interfaces are scarce in the market, and multithreaded
programming-oriented data flows can be compatible with most
control flow operating systems and have good scalability, that is,
they have the advantage of wide usage.

The main contributions of this work compared to precious re-
search are (1) we design a module of hybrid dataflow/von-Neumann
architecture that contain TAU and SPM. (2) we implement it and
test its preliminary performance.

2 SYSTEM ARCHITECTURE
The basic structure can be explained by the Figure 1. The processor
core is provided by RISC-V MINI structure, which is a open source
processor using RISC-V32I instruction set with three stages pipe-
line and is developed in chisel language by UC Berkeley.

The TAU is connected to both cores, and it can serve as a special
link between threads by special operation, which can speed up the
execution of dataflow task.

Figure 1: The system architecutre of the machine

The MMU stands for Memory Management Unit, and the Reg
Mapper maps peripheral devices registers to memory address space,
and the Atom stands for the atomic operation unitrelated to the
mutex for operating system. What’s more, necessary arbiter orga-
nizations are added, such likes the MemArbiter and NastiArbiter.

The SPM multiplexing the main storage address space, which
means low address will corresponding to a set of storage unit for
speed and high address will corresponding to the main storage,
through address decoding unit for real time data synchronous.

As for the peripheral devices, the UART is used for interaction
likes receiving command and output information. The RTC (Real-
Time Clock) serves as system clock, which is a counter in essence
and response to the scheduling time slice of the threads. Finally,
the main storage is connected through AXI bus, which can flexibly
be BRAM, DRAM and DDRAM etc.

3 TAU HARDWARE
This paper investigates the execution of coarse-grained data flows
with the thread granularity size as the task node of the data flow.
In the aspect of data flow programming, it uses data flow program-
ming based on multithreaded programming, such as DFC data flow
programming language [2]. However, when describing data flow
diagrams in multithreaded programming, access synchronization
control through mutexes is unavoidably required. For example, in
the case of Figure 2, the structure description of task node F on

preliminary
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Figure 2: Example of data ready signal write conflict

the left often includes the dependent data chain and ready identi-
fication. When data X and Y are ready at the same time, they all
need to modify the bits in the ready identity (assuming that the
task node is ready when the bits are all modified to 1), and there is
a write conflict.

To resolve access conflicts in multithreaded programming,
pthread_can be used Mutex and other forms of mutex exclusion.
However, the use of mutexes poses an efficiency issue, that is, it can
cause user programs to crash, causing context switching, which
can cause additional time overhead. This efficiency issue is one of
the main starting points for designing dedicated hardware for data
streaming.

This article considers storing task nodes’dependencies on data
in a specific hardware structure instead of using a software-based
ready identity. When both data ready signals occur at the same time,
it acts as an out-of-core hardware module structure, not affecting
the processor flow in progress, but using buffers to ensure that
the ready signal is not lost. This structure is referred to as Task
Activated Unit (TAU), in which the dependency of tasks on data
determines the readiness of tasks, which can then be scheduled by
the operating system

TAU (Task Activated Unit), mentioned in this paper, is indepen-
dent expanded hardware unit, which stored the data dependency
of task nodes among dataflow graph, with the data signal, data
ready signal as input and task ready signal as output. Since it is
based on muti-thread programming, task node can be represented
by its PID of the thread. As shown in Figure 3, the structure of
TAU is with 5 parts. The TAU is directly connected to processor
cores, the DataReady Channel transports the data ready address,
the Data Dependence Channel transports the PID as well as de-
pendency data address, and the Interrupt Channel transports the
ready node PID with state signal. TAU is consisted of buffer, Write
Arbiter, Interrupt Arbiter, TDC (Task Dependence Counter) and
TDU (Task-Data dependence Unit).

When TAU trace a dataflow task, Pid and data address will be
written into TDU through the Data Dependency Channel and go
by the TDC. During this process, the TDC counts the quantity of
the unready dependency data of task node, and the TDU stores
the dependency relation between two nodes. Since it is dual core
structure, the Data Dependency Write Channel is connected to
TDC through Write Arbiter, which means that when both cores
about to write, the arbiter will allow only one core to perform the
write operation, the other write will be temporarily stored in the
buffer.

Figure 3: The basic structure of TAU

Figure 4: The basic structure of the machine

Figure 5: The basic structure of the TDC

Since it’s hard to operate TAU in original RISC-V instruction
set, we develop extended instructions, which can write PID and
data address into TAU in one instruction to directly express the
dependency between each other. The reason of why not use “store”
to finish this job is that original “store” can only put one data into
the address stored in register, and if using a series of “store” to finish
it, the process will easily be interrupted and be hard to express the
dependency between instructions.

In this case, we develop two instructions, TW and TR, following
the principle of RISC-V Standard User Instruction Manual. The TW
is for writing data to TAU, and the TR is for transporting data ready
signal to TAU. As shown in Figure 4, the operate code “1110100”
and “1110101” are unused in RISC-V32I, which means it is safe to
extend instruction in that operate code.

The main function of TDC is counting the unready dependency
data as well as sending interrupt signal and state signal to processor
core. TDC is not only connected to TAU signal channel, but also
connected to TDU through three signal channels. As shown in
Figure 5, the TDC stores the valid bit, pid and dependency counter,

The main task of TDU (Task-Data Dependency Unit) is to store
the counting values of unready dependency data of the tasks, and to
find out the corresponding task node according to the data address
provided by the TDC request, and to feed back the TDC-Index to
the storage row where the task node is stored.

TDU only interacts with TDC, requesting no redundant descrip-
tion of the signal, while the Resp feedback signal channel contains
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Figure 6: The basic structure of the TDU

Figure 7: Trigger mode of data ready signal (no tau structure
on the left; tau structure on the right)

three main signals: TDC-Index, Finish, FullBit. The Finish signal is
used to notify the TDC to request the end of the query. The FullBit
signal is used to determine whether the response is full when a
TDC request is written.

The structure of TDU is shown in Figure 6, there are mainly valid
bits V stored internally. TDC stored row ordinal TDC-Index (task
node identity Pid unique correspondence), and DataAddr dependent
data address. The relationship between TDU and TDC is many-to-
many, because there is a case where data is dependent by multiple
task nodes in the task description of data flow, and there is also a
case where task nodes depend on multiple data, so there may be
the same DataAddr value or TDC-Index value between the stored
rows.

Describes coarse-grained data flow diagrams based on multi-
threaded programming, as shown in Figure 7 on the left, where
nodes perform tasks for threads. An edge pointing to a node repre-
sents the node’s dependent data and is signaled ready by the start
node of the edge. For example, when data ready information is sent
out after task node A calculation is completed, the data ready iden-
tity of task node B needs to be modified - this data ready identity
can be considered a semaphore for a P/V operation. Here task node
B enters a sleep wait state when described in the data flow diagram,
waiting for the ready identification, that is, the semaphore B wakes
up. The semaphores for P/V operations are implemented by the
kernel itself and are provided to user threads as system call inter-
faces. This results in the cost of context switching performed by
the processor (involving register saving and stack space switching,
etc.). With data flow hardware TAU, the data ready signal of task
node A can be modified to the ready identity of task node B in TAU
only by user instruction TR, without affecting the current execution
stream, thus bringing about acceleration effect.

4 SPM SYSTEM
In the traditional cache system, the transfer of shared data and
variables is delayed. Because of hits and misses in the cache, public

data in memory cannot be synchronized to each processor core
in a timely manner, so synchronization mechanisms are needed
to ensure communication between different kernel threads, which
greatly increases the overhead for data flow tasks.

In the SPM system, since there is no hit or miss, any processor
kernel has the same number of memory cycles for reading and
writing to the main memory. The first storage cycle is written to
the critical zone of memory by a thread, and the second can be read
by threads from other cores to achieve real-time communication
between different processor cores. The only thing a user needs to
do is to design a programmechanism to manage the space manually

The SPM (scratchpad memory) subsystem is consisted of storage
array, decoding logic unit and IO unit, which is commonly used for
embedded systems with low power consumption, small area and
high real-time performance.

As shown in Figure 8, compared with traditional cache, SPM sub-
system has a more concise structure, no tag storage and comparison
logic, and main memory address fetch data directly through address
decoding logic unit without considering complex issues such as hit
ratio, swap in and out like cache. As for the spatial locality, users
can manually manage the space of SPM to speed up the access of
dataflow data.

As shown in the Figure 9, the left stands for inter-core communi-
cation through traditional cache system, delay of which is the sum
of the delay of write back and refill. The right shows the inter-core
communication through SPM subsystem, by which the CPU can di-
rectly access the SPM through address decoding logic and the delay
is only two CPU cycles. So we can conclude that the efficiency of
the SPM system is indeed higher than that of the traditional cache
system in terms of inter-core communication alone,thus bringing
about acceleration effect

5 SYSTEM PERFORMANCE
As we implement our design into FPGA and make operating system
run on it, we develop and deploy many exams to test its perfor-
mance.

The Arty A7-100T development board is the hardware used in
this paper and is the product of Xlinx company. The company pro-
vides quite complete technical support such as the development
tools and documentation of the field programmer, so its field pro-
grammer is often used in business, teaching and scientific research.
The ATY A7-100T development board used in this paper is small in
size, has high transmission signal bandwidth, contains 225KB block
RAM, 256MB DDR3 storage, USB-UART bridge, single 100 MHz
crystal oscillator and other hardware devices [15]. Block RAM can
be initialized when writing a field bus, and the input frequency of
100 MHz can generate different clock frequencies via MMCMs and
PLLs.

Vivado is the EDA tool used in this paper. We use chisel lan-
guage [7, 13] to complete the overall hardware design, compile and
generate Verilog [12] hardware description code, and store the test
program and software in external memory

We loaded the riscv-xv6[18] operating system into a block ram
on the development board of the field programmer that has burned
the RISC-V data stream processor and run it.
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Figure 8: The comparison between cache and SPM system [8]

Figure 9: The difference of dataflowdirection between cache
and SPM system

Table 2: The important configuration parameter of TGFF

Node
Amount

Initial
Node
Amount

Maximum
in-degree

Maximum
out-degree

deadline
for task
execution

N 0.1±0.05N αN 0.2IN 0.5N

We use TGFF [9] tool, an open-source random DAG generator
builded in C++, to assess the TAU by optimistic instructions amount.
The configuration of TGFF tool is shown on Table 2, among which
the N stand for total nodes amount and the αN stands for maximum
input degree as the variable, and the other parameter are in portion
of N and αN. .

For example, with the parameter configuration of N=40, α=0.2,
the randomly generated DAG graph of TGFF is shown in Figure 10.
There is an execution-first dependency among the nodes as a whole,

Figure 10: Random DAG generated by TGFF

which corresponds to the data dependency of the general task nodes
in the data flow diagram. This paper adjusts the number and value
of N. Each set of parameter adjustments generates random data
flow. Then, the number of optimized V operations for each data flow
graph is counted and the average within the group is calculated. It
should be noted here that N is only the maximum possible value
for a single node, but it is randomly chosen between [0, N] in the
actual generation process, and the random algorithm is determined
internally by the TGFF. Finally, we get the relationship between the
number of optimization instructions and data flow diagram nodes,
entry parameters Figure 11 and Figure 12.
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Figure 11: The relationship between the number of opti-
mized machine instructions and data flow graph nodes and
in-degree parameters

Figure 12: The relationship between the number of opti-
mized machine instructions and data flow graph nodes and
in-degree parameters

Table 3: The relation between TAU acceleration and task
granularity (200 tasks)

Task granularity 500 2000 5000 10000
TAU
acceleration

10.67% 10.32% 9.51% 8.42%

As Table 3 shows the acceleration ratio obtained by changing the
task granularity size in the resulting data flow diagram when the
number of fixed task nodes is 200. The data dependency of the data
flow graph is also fixed. As the granularity of the task increases,
the time to execute the task itself increases, and the time spent on
synchronization decreases, affecting the TAU’s acceleration ratio.
From task granularity of 500 machine instructions to task granular-
ity of 1000 machine instructions, TAU acceleration decreased from
10.67% to 8.42%. From Figure 13 You can see that the attenuation is

Figure 13: Curve of TAU acceleration and task granularity

Figure 14: Curve of TAU acceleration and task amount

almost linear, and in theoretical extremes the numerical attenuation
will be close to zero.

As shown in Table 4, with a fixed task granularity size of 2000
instructions, data flow diagrams with different number of nodes are
generated, and their data dependencies change. The data flow graph
used in this paper meets at least the condition that the dependency
relationship of the data flow graph with more task nodes is more
complex (that is, more nodes in and out). As the complexity of
data dependency increases, the cost of data synchronization will
gradually increase. From 20 task nodes to 200 task nodes, the TAU
acceleration increased from 3.07% to 10.32%. As shown in Figure
14, the acceleration effect of TAU shows a slower upward trend of
quadratic curve. The theory of quadratic increase in the number
of optimization instructions. In extreme and ideal cases, when the
number of edges in the data flow graph reaches N(N-1)/2, TAU data
flow execution reaches the ideal maximum value of 50.4% (200 task
nodes, 2000 instruction task granularity). In practice, however, the
general data flow graph is not too dense (the randomly generated
description of TGFF) and is limited by the TAU’s own storage, and
TAU acceleration is far less than the theoretical upper limit.

6 CONCLUSIONS
The work of this paper design and implement a new kind of hybrid
dataflow/von-Neumann machine.

1) Design special hardware for data flow, namely task activa-
tion unit TAU. It implements the functions of writing the task
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Table 4: The relation between TAU acceleration and task amount (2000 task granularity)

Task Amount 20 50 100 200
TAU acceleration 3.07% 3.63% 5.80% 10.32%

node dependent data relationship, triggering the dependent
data ready signal, and triggering the task node ready signal.
At the same time, the write instruction and ready instruc-
tion are extended to access the unit, and the programming
verification is carried out in the way of assembly embedded.

2) Integrate SPM system into hybrid machine to enhance the
efficiency of inter-core communication. It implements the
functions of directly write or read to the main storage and
storing special data in SPM unit.

3) System performance analysis of data flow execution envi-
ronment. On the one hand, the random data flow graph
generated by TGFF tool is used to help describe the acceler-
ated optimization of tau, and the mathematical relationship
between the number of nodes in the data flow graph and
the number of optimized instructions is established. On the
other hand, the overall execution environment of data flow
is simulated, the acceleration ratio of running time is given,
and the acceleration performance is discussed.
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