skip to main content
10.1145/3548785.3548786acmotherconferencesArticle/Chapter ViewAbstractPublication PagesideasConference Proceedingsconference-collections
research-article

Running Temporal Logical Queries on the Relational Model

Published: 13 September 2022 Publication History

Abstract

State of the art for model checking exploit computationally intensive solutions, bottlenecked by either repeated data access or suboptimal algorithmic implementations. Our solution outperforms the previous solutions while proposing novel temporal logic operators for accessing relational tables.

References

[1]
Giovanni Acampora, Autilia Vitiello, Bruno Di Stefano, Wil van der Aalst, Christian Gunther, and Eric Verbeek. 2017. IEEE 1849: The XES Standard: The Second IEEE Standard Sponsored by IEEE Computational Intelligence Society. IEEE Comp. Int. Mag. 12, 2 (2017).
[2]
Simone Agostinelli, Giacomo Bergami, Alessio Fiorenza, Fabrizio Maria Maggi, Andrea Marrella, and Fabio Patrizi. 2021. Discovering Declarative Process Model Behavior from Event Logs via Model Learning. In ICPM 2021. IEEE, 48–55.
[3]
Adriano Augusto, Ahmed Awad, and Marlon Dumas. 2021. Efficient Checking of Temporal Compliance Rules Over Business Process Event Logs. CoRR abs/2112.04623(2021).
[4]
Ladjel Bellatreche, Mohamed Kechar, and Safia Nait Bahloul. 2021. Bringing Common Subexpression Problem from the Dark to Light: Towards Large-Scale Workload Optimizations. In IDEAS. ACM.
[5]
Giacomo Bergami. 2021. On Efficiently Equi-Joining Graphs. In IDEAS. ACM.
[6]
Giacomo Bergami, Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi, and Joonas Puura. 2021. Exploring Business Process Deviance with Sequential and Declarative Patterns. CoRR abs/2111.12454(2021).
[7]
Giacomo Bergami, Fabrizio Maria Maggi, Andrea Marrella, and Marco Montali. 2021. Aligning Data-Aware Declarative Process Models and Event Logs. In Business Process Management. 235–251.
[8]
Andrea Burattin, Fabrizio Maria Maggi, and Alessandro Sperduti. 2016. Conformance checking based on multi-perspective declarative process models. Expert Syst. Appl. 65(2016), 194–211.
[9]
Eduardo González López de Murillas, Hajo A. Reijers, and Wil M. P. van der Aalst. 2022. Data-Aware Process Oriented Query Language. In Process Querying Methods. Springer, 49–83.
[10]
Valeria Fionda, Gianluigi Greco, and Marco Antonio Mastratisi. 2021. Reasoning About Smart Contracts Encoded in LTL. In AIxIA. Springer International Publishing, Cham, 123–136.
[11]
Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender, and Martin L. Kersten. 2012. MonetDB: Two Decades of Research in Column-oriented Database Architectures. IEEE Data Eng. Bull. 35, 1 (2012), 40–45.
[12]
Nathan John, Jeremy Gow, and Paul Cairns. 2019. Why is debugging video game AI hard?. In Proc. AISB AI & Games symposium. 20–24.
[13]
Jingrui Li, Kento Goto, and Motomichi Toyama. 2021. SSstory: 3D data storytelling based on SuperSQL and Unity. In IDEAS. ACM, 173–183.
[14]
Jianwen Li, Geguang Pu, Yueling Zhang, Moshe Y. Vardi, and Kristin Y. Rozier. 2020. SAT-based explicit LTLf satisfiability checking. Artificial Intelligence 289 (2020), 103369.
[15]
Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, and Wil M. P. van der Aalst. 2016. Balanced multi-perspective checking of process conformance. Computing 98, 4 (2016).
[16]
Youichiro Miyake. 2017. Current Status of Applying Artificial Intelligence in Digital Games. In Handbook of Digital Games and Entertainment Technologies. Springer Singapore, 253–292.
[17]
André Petermann, Martin Junghanns, Robert Müller, and Erhard Rahm. 2014. FoodBroker - Generating Synthetic Datasets for Graph-Based Business Analytics. In WBDB’14.
[18]
Jose Picado, John Davis, Arash Termehchy, and Ga Young Lee. 2020. Learning Over Dirty Data Without Cleaning. In SIGMOD Conference. ACM, 1301–1316.
[19]
Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Mendling, and Hajo A. Reijers. 2011. Imperative versus Declarative Process Modeling Languages: An Empirical Investigation. In BPM Workshops. 383–394.
[20]
Artem Polyvyanyy, Arthur H. M. ter Hofstede, Marcello La Rosa, Chun Ouyang, and Anastasiia Pika. 2019. Process Query Language: Design, Implementation, and Evaluation. Vol. abs/1909.09543.
[21]
Marcella Rovani, Fabrizio Maria Maggi, Massimiliano de Leoni, and Wil M. P. van der Aalst. 2015. Declarative process mining in healthcare. Expert Systems with Applications 42, 23 (2015), 9236–9251.
[22]
Anne Rozinat and Wil M. P. van der Aalst. 2008. Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33, 1 (2008).
[23]
Stefan Schönig. 2015. SQL Queries for Declarative Process Mining on Event Logs of Relational Databases. CoRR abs/1512.00196(2015).
[24]
Stefan Schönig, Andreas Rogge-Solti, Cristina Cabanillas, Stefan Jablonski, and Jan Mendling. 2016. Efficient and Customisable Declarative Process Mining with SQL. In CAiSE. Springer.

Cited By

View all
  • (2024)Streamlining Temporal Formal Verification over Columnar DatabasesInformation10.3390/info1501003415:1(34)Online publication date: 8-Jan-2024
  • (2023)Quickening Data-Aware Conformance Checking through Temporal AlgebrasInformation10.3390/info1403017314:3(173)Online publication date: 8-Mar-2023
  • (2023)Enhancing Declarative Temporal Model Mining in Relational Databases: A Preliminary StudyProceedings of the 27th International Database Engineered Applications Symposium10.1145/3589462.3589491(34-42)Online publication date: 5-May-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
IDEAS '22: Proceedings of the 26th International Database Engineered Applications Symposium
August 2022
174 pages
ISBN:9781450397094
DOI:10.1145/3548785
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 September 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Knowledge Bases
  2. Logical Artificial Intelligence
  3. Query Plan
  4. Temporal Logic

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

IDEAS'22

Acceptance Rates

Overall Acceptance Rate 74 of 210 submissions, 35%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)27
  • Downloads (Last 6 weeks)8
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Streamlining Temporal Formal Verification over Columnar DatabasesInformation10.3390/info1501003415:1(34)Online publication date: 8-Jan-2024
  • (2023)Quickening Data-Aware Conformance Checking through Temporal AlgebrasInformation10.3390/info1403017314:3(173)Online publication date: 8-Mar-2023
  • (2023)Enhancing Declarative Temporal Model Mining in Relational Databases: A Preliminary StudyProceedings of the 27th International Database Engineered Applications Symposium10.1145/3589462.3589491(34-42)Online publication date: 5-May-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media