skip to main content
10.1145/3550469.3555418acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Mixed Variational Finite Elements for Implicit Simulation of Deformables

Published:30 November 2022Publication History

ABSTRACT

We propose and explore a new method for the implicit time integration of elastica. Key to our approach is the use of a mixed variational principle. In turn, its finite element discretization leads to an efficient and accurate sequential quadratic programming solver with a superset of the desirable properties of many previous integration strategies. This framework fits a range of elastic constitutive models and remains stable across a wide span of time step sizes and material parameters (including problems that are approximately rigid). Our method exhibits convergence on par with full Newton type solvers and also generates visually plausible results in just a few iterations comparable to recent fast simulation methods that do not converge. These properties make it suitable for both offline accurate simulation and performant applications with expressive physics. We demonstrate the efficacy of our approach on a number of simulated examples.

Skip Supplemental Material Section

Supplemental Material

mfem_video.mp4

mp4

62.8 MB

References

  1. David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In SIGGRAPH. ACM, New York, NY, USA, 43–54.Google ScholarGoogle Scholar
  2. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. George E. Brown and Rahul Narain. 2021. WRAPD: Weighted Rotation-aware ADMM for Parameterization and Deformation. ACM Trans. Graph 40, 4 (8 2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Kazem Cheshmi, Danny M Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi. 2020. NASOQ: numerically accurate sparsity-oriented QP solver. ACM Transactions on Graphics (TOG) 39, 4 (2020), 96–1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Timothy A Davis. 2006. Direct methods for sparse linear systems. SIAM.Google ScholarGoogle Scholar
  6. Theodore F Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M Teran. 2015. Optimization integrator for large time steps. IEEE transactions on visualization and computer graphics 21, 10(2015), 1103–1115.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gaël Guennebaud, Benoît Jacob, 2010. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  8. Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros, and Markus Gross. 2012. Rig-space physics. ACM transactions on graphics (TOG) 31, 4 (2012), 1–8.Google ScholarGoogle Scholar
  9. Ernst Hairer and Christian Lubich. 2014. Energy-diminishing integration of gradient systems. IMA J. Numer. Anal. 34, 2 (2014), 452–461.Google ScholarGoogle ScholarCross RefCross Ref
  10. Alec Jacobson, Daniele Panozzo, 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/.Google ScholarGoogle Scholar
  11. Couro Kane, Jerrold E Marsden, Michael Ortiz, and Matthew West. 2000. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal for numerical methods in engineering 49, 10(2000), 1295–1325.Google ScholarGoogle Scholar
  12. L. Kharevych, Weiwei Yang, Y. Tong, E. Kanso, J. E. Marsden, P. Schröder, and M. Desbrun. 2006. Geometric, Variational Integrators for Computer Animation(SCA ’06). 43–51.Google ScholarGoogle Scholar
  13. Lei Lan, Danny M Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022. Affine Body Dynamics: Fast, Stable & Intersection-free Simulation of Stiff Materials. arXiv preprint arXiv:2201.10022(2022).Google ScholarGoogle Scholar
  14. David I.W. Levin. 2020. Bartels: A lightweight collection of routines for physics simulation. https://github.com/dilevin/Bartels.Google ScholarGoogle Scholar
  15. Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M. Kaufman. 2019. Decomposed Optimization Time Integrator for Large-Step Elastodynamics. ACM Transactions on Graphics 38, 4 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Transactions on Graphics (TOG) 36, 3 (2017), 23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke, and Viktor Makoviychuk. 2019. Non-Smooth Newton Methods for Deformable Multi-Body Dynamics. CoRR abs/1907.04587(2019). arXiv:1907.04587Google ScholarGoogle Scholar
  18. Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-Based Simulation of Compliant Constrained Dynamics(MIG ’16).Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011. Example-Based Elastic Materials. In SIGGRAPH(SIGGRAPH ’11). ACM, New York, NY, USA, Article 72, 8 pages.Google ScholarGoogle Scholar
  20. V. Modi, L. Fulton, A. Jacobson, S. Sueda, and D.I.W. Levin. 2020. EMU: Efficient Muscle Simulation in Deformation Space. Computer Graphics Forum (Dec 2020). https://doi.org/10.1111/cgf.14185Google ScholarGoogle ScholarCross RefCross Ref
  21. Matthias Müller, Nuttapong Chentanez, Miles Macklin, and Stefan Jeschke. 2017. Long Range Constraints for Rigid Body Simulations. In SCA(SCA ’17). ACM, New York, NY, USA, Article 14, 10 pages.Google ScholarGoogle Scholar
  22. Matthias Muller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position based dynamics. J Vis Commun Image R 18, 2 (2007), 109 – 118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Matthias Müller, Miles Macklin, Nuttapong Chentanez, Stefan Jeschke, and Tae-Yong Kim. 2020. Detailed Rigid Body Simulation with Extended Position Based Dynamics. Computer Graphics Forum(2020).Google ScholarGoogle Scholar
  24. Matthew Overby, George E. Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE TVCG 23, 10 (2017), 2222–2234.Google ScholarGoogle Scholar
  25. E. Reissner. 1985. On mixed variational formulations in finite elasticity. Acta Mechanica 56, 3-4 (1985), 117–125.Google ScholarGoogle ScholarCross RefCross Ref
  26. Martin Servin, Claude Lacoursiere, and Niklas Melin. 2006. Interactive simulation of elastic deformable materials. In SIGRAD 2006. Citeseer.Google ScholarGoogle Scholar
  27. Nicholas Sharp 2019. Polyscope. www.polyscope.run.Google ScholarGoogle Scholar
  28. Eftychios Sifakis and Jernej Barbic. 2012. SIGGRAPH 2012 Course Notes FEM Simulation of 3D Deformable Solids: A practitioner’s guide to theory, discretization and model reduction. (version: August 4, 2012). http://femdefo.orgGoogle ScholarGoogle Scholar
  29. Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2, Article 12 (2018), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Demetri Terzopoulos and Hong Qin. 1994. Dynamic NURBS with Geometric Constraints for Interactive Sculpting. ACM Trans. Graph. 13, 2 (April 1994), 103–136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the GPU. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S J Wright and J Nocedal. 1999. Numerical optimization. (1999).Google ScholarGoogle Scholar
  33. Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A Scalable Galerkin Multigrid Method for Real-Time Simulation of Deformable Objects. ACM Trans. Graph. 38, 6, Article 162 (2019), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mixed Variational Finite Elements for Implicit Simulation of Deformables

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SA '22: SIGGRAPH Asia 2022 Conference Papers
      November 2022
      482 pages
      ISBN:9781450394703
      DOI:10.1145/3550469

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 November 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate178of869submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format