skip to main content
10.1145/3550469.3555427acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Realistic Luminance in VR

Published: 30 November 2022 Publication History

Abstract

As virtual reality (VR) headsets continue to achieve ever more immersive visuals along the axes of resolution, field of view, focal cues, distortion mitigation, and so on, the luminance and dynamic range of these devices falls far short of widely available consumer televisions. While work remains to be done on the display architecture side, power and weight limitations in head-mounted displays pose a challenge for designs aiming for high luminance. In this paper, we seek to gain a basic understanding of VR user preferences for display luminance values in relation to known, real-world luminances for immersive, natural scenes. To do so, we analyze the luminance characteristics of an existing high-dynamic-range (HDR) panoramic image dataset, build an HDR VR headset capable of reproducing over 20,000 nits peak luminance, and conduct a first-of-its-kind study on user brightness preferences in VR. We conclude that current commercial VR headsets do not meet user preferences for display luminance, even for indoor scenes.

Supplemental Material

MP4 File
presentation
ZIP File
Zip file containing supplementary video and appendix

References

[1]
Wendy J Adams, James H Elder, Erich W Graf, Julian Leyland, Arthur J Lugtigheid, and Alexander Muryy. 2016. The southampton-york natural scenes (SYNS) dataset: Statistics of surface attitude. Scientific Reports 6, 1 (2016), 1–17.
[2]
Kynthia Chamilothori, Jan Wienold, and Marilyne Andersen. 2019. Adequacy of immersive virtual reality for the perception of daylit spaces: comparison of real and virtual environments. Leukos 15, 2-3 (2019), 203–226.
[3]
Alexandre Chapiro, Timo Kunkel, Robin Atkins, and Scott Daly. 2018. Influence of screen size and field of view on perceived brightness. ACM Transactions on Applied Perception (TAP) 15, 3 (2018), 1–13.
[4]
Jacob Cohen. 1992. A power primer. Psychological bulletin 112, 1 (1992), 155.
[5]
Scott Daly, Timo Kunkel, Xing Sun, Suzanne Farrell, and Poppy Crum. 2013. Preference limits of the visual dynamic range for ultra high quality and aesthetic conveyance. 86510J. https://doi.org/10.1117/12.2013161
[6]
Hugh Davson. 1990. Physiology of the Eye. Bloomsbury Publishing.
[7]
Paul E Debevec and Jitendra Malik. 2008. Recovering high dynamic range radiance maps from photographs. In ACM SIGGRAPH 2008 classes. 1–10.
[8]
Dolby. 2016. Dolby Vision™ for the Home. Technical Report. Dolby Laboratories, Inc.https://connect.avid.com/rs/149-WFZ-676/images/Avid_HDRSeminar_dolby-vision-white-paper.pdf
[9]
Mark D Fairchild. 2013. Color appearance models. John Wiley & Sons.
[10]
Fufu Fang, Han Gong, Michal Mackiewicz, and Graham Finlayson. 2017. Colour correction toolbox. (2017).
[11]
Graham D Finlayson and Mark S Drew. 1996. The maximum ignorance assumption with positivity. In Color and Imaging Conference. Society for Imaging Science and Technology, 202–205.
[12]
Jan Froehlich, Stefan Grandinetti, Bernd Eberhardt, Simon Walter, Andreas Schilling, and Harald Brendel. 2014. Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays. In Digital photography X, Vol. 9023. SPIE, 279–288.
[13]
Alan Gilchrist, Christos Kossyfidis, Frederick Bonato, Tiziano Agostini, Joseph Cataliotti, Xiaojun Li, Branka Spehar, Vidal Annan, and Elias Economou. 1999. An anchoring theory of lightness perception. Psychological review 106, 4 (1999), 795.
[14]
Ralph Jacobson, Sidney Ray, Geoffrey G Attridge, and Norman Axford. 2013. Manual of Photography. Routledge.
[15]
Kil Joong Kim, Rafal Mantiuk, and Kyoung Ho Lee. 2013. Measurements of achromatic and chromatic contrast sensitivity functions for an extended range of adaptation luminance. In Human vision and electronic imaging XVIII. SPIE.
[16]
Timo Kunkel and Erik Reinhard. 2010. A reassessment of the simultaneous dynamic range of the human visual system. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization.
[17]
Patrick Ledda, Alan Chalmers, and Helge Seetzen. 2004. HDR displays: a validation against reality. In 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), Vol. 3. IEEE, 2777–2782.
[18]
Laura R Luidolt, Michael Wimmer, and Katharina Krösl. 2020. Gaze-dependent simulation of light perception in virtual reality. IEEE Transactions on Visualization and Computer Graphics 26, 12(2020), 3557–3567.
[19]
Steve Mann and Rosalind W. Picard. 1995. On being ‘undigital’ with digital cameras: Extending Dynamic Range by Combining Differently Exposed Pictures. In Proceedings of IS&T. 442–448.
[20]
Arian Mehrfard, Javad Fotouhi, Giacomo Taylor, Tess Forster, Nassir Navab, and Bernhard Fuerst. 2019. A comparative analysis of virtual reality head-mounted display systems. arXiv preprint arXiv:1912.02913(2019).
[21]
Hossein Najaf-Zadeh, Madhukar Budagavi, and Esmaeil Faramarzi. 2017. VR+ HDR: A system for view-dependent rendering of HDR video in virtual reality. In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 1032–1036.
[22]
Sumanta N Pattanaik, Jack Tumblin, Hector Yee, and Donald P Greenberg. 2000. Time-dependent visual adaptation for fast realistic image display. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. 47–54.
[23]
Clotilde Pierson, Coralie Cauwerts, Magali Bodart, and Jan Wienold. 2021. Tutorial: luminance maps for daylighting studies from high dynamic range photography. Leukos 17, 2 (2021), 140–169.
[24]
Josiane McGinn Proulx. 2020. A Comparative Study of Lighting Perceptions between Tone-Mapped Virtual Reality Environments and Physical Environments. Ph.D. Dissertation. University of Colorado at Boulder.
[25]
Ana Radonjić, Sarah R. Allred, Alan L. Gilchrist, and David H. Brainard. 2011. The Dynamic Range of Human Lightness Perception. Current Biology 21, 22 (Nov. 2011), 1931–1936. https://doi.org/10.1016/j.cub.2011.10.013
[26]
Alessio Regalbuto. 2019. Remote Visual Observation of Real Places through Virtual Reality Headsets. (2019).
[27]
Erik Reinhard, Wolfgang Heidrich, Paul Debevec, Sumanta Pattanaik, Greg Ward, and Karol Myszkowski. 2010. High dynamic range imaging: acquisition, display, and image-based lighting. Morgan Kaufmann.
[28]
TJ Rhodes, Gavin Miller, Qi Sun, Daichi Ito, and Li-Yi Wei. 2019. A transparent display with per-pixel color and opacity control. In ACM SIGGRAPH Emerging Technologies.
[29]
S Rockcastle, M Danell, E Calabrese, G Sollom-Brotherton, A Mahic, K Van Den Wymelenberg, and R Davis. 2021. Comparing perceptions of a dimmable LED lighting system between a real space and a virtual reality display. Lighting Research & Technology 53, 8 (2021), 701–725.
[30]
Helge Seetzen, Wolfgang Heidrich, Wolfgang Stuerzlinger, Greg Ward, Lorne Whitehead, Matthew Trentacoste, Abhijeet Ghosh, and Andrejs Vorozcovs. 2004. High dynamic range display systems. ACM Transactions on Graphics (TOG)(2004).
[31]
Helge Seetzen, Hiroe Li, Linton Ye, Wolfgang Heidrich, Lorne Whitehead, and Greg Ward. 2006. Observations of Luminance, Contrast and Amplitude Resolution of Displays. SID Symposium Digest of Technical Papers 37, 1 (2006), 1229. https://doi.org/10.1889/1.2433199
[32]
Helge Seetzen, Lorne A. Whitehead, and Greg Ward. 2003. A High Dynamic Range Display Using Low and High Resolution Modulators. SID Symposium Digest of Technical Papers 34, 1 (2003), 1450. https://doi.org/10.1889/1.1832558
[33]
Gunter Wyszecki and Walter Stanley Stiles. 1982. Color science. Vol. 8. Wiley New York.
[34]
Fangcheng Zhong, Akshay Jindal, Ali Özgür Yöntem, Param Hanji, Simon J. Watt, and Rafał K. Mantiuk. 2021. Reproducing reality with a high-dynamic-range multi-focal stereo display. ACM Transactions on Graphics (TOG) 40, 6 (Dec. 2021), 1–14. https://doi.org/10.1145/3478513.3480513

Cited By

View all
  • (2025)Veränderungen der Beleuchtungsanforderungen bei sehbehinderten Patienten durch den Einsatz neuer BildschirmtechnologienChanges in lighting requirements for visually impaired patients due to the use of new screen technologiesSpektrum der Augenheilkunde10.1007/s00717-025-00590-xOnline publication date: 26-Feb-2025
  • (2024)Evaluating Typing Performance in Different Mixed Reality Manifestations using Physiological FeaturesProceedings of the ACM on Human-Computer Interaction10.1145/36981428:ISS(377-406)Online publication date: 24-Oct-2024
  • (2024)AR-DAVID: Augmented Reality Display Artifact Video DatasetACM Transactions on Graphics10.1145/368796943:6(1-11)Online publication date: 19-Dec-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SA '22: SIGGRAPH Asia 2022 Conference Papers
November 2022
482 pages
ISBN:9781450394703
DOI:10.1145/3550469
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 November 2022

Check for updates

Author Tags

  1. high-dynamic-range
  2. perception
  3. virtual reality

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Data Availability

Conference

SA '22
Sponsor:
SA '22: SIGGRAPH Asia 2022
December 6 - 9, 2022
Daegu, Republic of Korea

Acceptance Rates

Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)81
  • Downloads (Last 6 weeks)5
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Veränderungen der Beleuchtungsanforderungen bei sehbehinderten Patienten durch den Einsatz neuer BildschirmtechnologienChanges in lighting requirements for visually impaired patients due to the use of new screen technologiesSpektrum der Augenheilkunde10.1007/s00717-025-00590-xOnline publication date: 26-Feb-2025
  • (2024)Evaluating Typing Performance in Different Mixed Reality Manifestations using Physiological FeaturesProceedings of the ACM on Human-Computer Interaction10.1145/36981428:ISS(377-406)Online publication date: 24-Oct-2024
  • (2024)AR-DAVID: Augmented Reality Display Artifact Video DatasetACM Transactions on Graphics10.1145/368796943:6(1-11)Online publication date: 19-Dec-2024
  • (2024)Understanding the Impact of the Reality-Virtuality Continuum on Visual Search Using Fixation-Related Potentials and Eye Tracking FeaturesProceedings of the ACM on Human-Computer Interaction10.1145/36765288:MHCI(1-33)Online publication date: 24-Sep-2024
  • (2024)PEA-PODs: Perceptual Evaluation of Algorithms for Power Optimization in XR DisplaysACM Transactions on Graphics10.1145/365812643:4(1-17)Online publication date: 19-Jul-2024
  • (2024)Searching Across Realities: Investigating ERPs and Eye-Tracking Correlates of Visual Search in Mixed RealityIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345617230:11(6997-7007)Online publication date: Nov-2024
  • (2024)Eye-Adapted HDR Viewing of Stereoscopic Panoramic Photography in Virtual Reality2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE)10.1109/MetroXRAINE62247.2024.10796645(924-929)Online publication date: 21-Oct-2024
  • (2024)59‐1: Enhancing Brightness with Multi‐Color HolographySID Symposium Digest of Technical Papers10.1002/sdtp.1765155:1(809-812)Online publication date: 30-Jul-2024
  • (2023)DazzleVR: Enhancement of Brightness by Presenting Afterimage and Dazzle Reflex Sensation in Virtual RealitySIGGRAPH Asia 2023 Emerging Technologies10.1145/3610541.3614579(1-2)Online publication date: 28-Nov-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media