skip to main content
research-article

A Query Optimizer for Range Queries over Multi-Attribute Trajectories

Published: 27 January 2023 Publication History

Abstract

A multi-attribute trajectory consists of a spatio-temporal trajectory and a set of descriptive attributes. Such data enrich the representation of traditional spatio-temporal trajectories to have comprehensive knowledge of moving objects. Range query is a fundamental operator over multi-attribute trajectories. Such a query contains two predicates, spatio-temporal and attribute, and returns the objects whose locations are within a distance threshold to the query trajectory and attributes contain expected values. There are different execution plans for answering the query. To enhance the capability of a trajectory database, an optimizer is essentially required to (i) accurately estimate the cost for alternative query strategies in terms of disk accesses, (ii) build a decision-making module that automatically sorts the data in an appropriate way and selects the optimal query plan, and (iii) update the analytical models when new trajectories are arrived. The cost model supports both uniform and non-uniform spatio-temporal data distribution and incorporates attribute distribution. The optimizer is fully developed inside a database system kernel and comprehensively evaluated in terms of accuracy and effectiveness by using large real and synthetic datasets.

References

[1]
[n. d.]. http://factory.datatang.com/en/.
[2]
M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik. 2012. Learning-based query performance modeling and prediction. In IEEE ICDE. IEEE Computer Society, 390–401.
[3]
C. Böhm. 2000. A cost model for query processing in high dimensional data spaces. ACM Trans. Datab. Syst. 25, 2 (2000), 129–178.
[4]
R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. 2008. SCOPE: Easy and efficient parallel processing of massive data sets. Proc. VLDB Endow. 1, 2 (2008), 1265–1276.
[5]
D. W. Choi, J. Pei, and T. Heinis. 2017. Efficient mining of regional movement patterns in semantic trajectories. PVLDB 10, 13 (2017), 2073–2084.
[6]
G. Cong and C. S. Jensen. 2016. Querying geo-textual data: Spatial keyword queries and beyond. In SIGMOD. 2207–2212.
[7]
A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. 2006. Cost models for distance joins queries using R-trees. Data Knowl. Eng. 57, 1 (2006), 1–36.
[8]
M. Luisa Damiani, H. Issa, R. H. Güting, and F. Valdés. 2015. Symbolic trajectories and application challenges. ACM SIGSPATIAL Spec. 7, 1 (2015), 51–58.
[9]
M. A. Soliman et al.2014. Orca: A modular query optimizer architecture for big data. In ACM SIGMOD. ACM, 337–348.
[10]
Y. Tao et al.2004. An efficient cost model for optimization of nearest neighbor search in low and medium dimensional spaces. IEEE Trans. Knowl. Data Eng. 16, 10 (2004), 1169–1184.
[11]
Y. Fang, R. Cheng, W. Tang, S. Maniu, and X. S. Yang. 2016. Scalable algorithms for nearest-neighbor joins on big trajectory data. In ICDE. 1528–1529.
[12]
E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. 2007. Algorithms for nearest neighbor search on moving object trajectories. GeoInformatica 11, 2 (2007), 159–193.
[13]
D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. 2005. Selectivity estimators for multidimensional range queries over real attributes. VLDB J. 14, 2 (2005), 137–154.
[14]
R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. 2000. A foundation for representing and querying moving objects. ACM Trans. Datab. Syst. 25, 1 (2000), 1–42.
[15]
R. H. Güting, T. Behr, and C. Düntgen. 2010. SECONDO: A platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng. Bull. 33, 2 (2010), 56–63.
[16]
R. H. Güting, T. Behr, and J. Xu. 2010. Efficient k-nearest neighbor search on moving object trajectories. VLDB J. 19, 5 (2010), 687–714.
[17]
R. H. Güting, F. Valdés, and M. L. Damiani. 2015. Symbolic trajectories. ACM Trans. Spat. Algor. Syst. 1, 2 (2015), Article 7.
[18]
Y. Han, L. Wang, Y. Zhang, W. Zhang, and X. Lin. 2015. Spatial keyword range search on trajectories. In DASFAA. 223–240.
[19]
H. Jeung, H. Lu, S. Sathe, and M. Lung Yiu. 2014. Managing evolving uncertainty in trajectory databases. IEEE Trans. Knowl. Data Eng. 26, 7 (2014), 1692–1705.
[20]
H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. 2008. Discovery of convoys in trajectory databases. PVLDB 1, 1 (2008), 1068–1080.
[21]
H. Lan, Z. Bao, and Y. Peng. 2021. A survey on advancing the DBMS query optimizer: Cardinality estimation, cost model, and plan enumeration. Data Sci. Eng. 6, 1 (2021), 86–101.
[22]
T. Lee, J. Park, S. Lee, and et al.2015. Processing and optimizing main memory spatial-keyword queries. PVLDB 9, 3 (2015), 132–143.
[23]
J. Leeka and K. Rajan. 2019. Incorporating super-operators in big-data query optimizers. Proc. VLDB Endow. 13, 3 (2019), 348–361.
[24]
V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T. Neumann. 2015. How good are query optimizers, really? Proc. VLDB Endow. 9, 3 (2015), 204–215.
[25]
P. Liu, M. Wang, J. Cui, and H. Li. 2021. Top-k competitive location selection over moving objects. Data Sci. Eng. 6, 4 (2021), 392–401.
[26]
Y. Lu, J. Lu, G. Cong, W. Wu, and C. Shahabi. 2014. Efficient algorithms and cost models for reverse spatial-keyword k-nearest neighbor search. ACM Trans. Database Syst. 39, 2 (2014), 13:1–13:46.
[27]
P. Negi, M. Interlandi, R. Marcus, M. Alizadeh, T. Kraska, M. Friedman, and A. Jindal. 2021. Steering query optimizers: A practical take on big data workloads. In ACM SIGMOD. ACM, 2557–2569.
[28]
C. Parent, S. Spaccapietra, C. Renso, and et al.2013. Semantic trajectories modeling and analysis. ACM Comput. Surv. 45, 4 (2013), 42.
[29]
Z. Shang, G. Li, and Z. Bao. 2018. DITA: Distributed in-memory trajectory analytics. In SIGMOD. 725–740.
[30]
S. Sprenger, P. Schäfer, and U. Leser. 2018. Multidimensional range queries on modern hardware. In SSDBM. 4:1–4:12.
[31]
S. Sprenger, P. Schäfer, and U. Leser. 2019. BB-tree: A main-memory index structure for multidimensional range queries. In ICDE. 1566–1569.
[32]
H. Su, K. Zheng, K. Zeng, J. Huang, S. W. Sadiq, N. J. Yuan, and X. Zhou. 2015. Making sense of trajectory data: A partition-and-summarization approach. In ICDE. 963–974.
[33]
Y. Tao and D. Papadias. 2004. Performance analysis of R*-trees with arbitrary node extents. IEEE Trans. Knowl. Data Eng. 16, 6 (2004), 653–668.
[34]
Y. Tao, D. Papadias, and J. Zhang. 2002. Cost models for overlapping and multi-version B-trees. In ICDE. 191–200.
[35]
Y. Theodoridis and T. K. Sellis. 1996. A model for the prediction of R-tree performance. In ACM SIGACT-SIGMOD-SIGART. 161–171.
[36]
Y. Theodoridis, E. Stefanakis, and T. K. Sellis. 1998. Cost models for join queries in spatial databases. In ICDE. 476–483.
[37]
Y. Theodoridis, E. Stefanakis, and T. K. Sellis. 2000. Efficient cost models for spatial queries using R-trees. IEEE Trans. Knowl. Data Eng. 12, 1 (2000), 19–32.
[38]
Y. Tong, Y. Chen, Z. Zhou, L. Chen, J. Wang, Q. Yang, J. Ye, and W. Lv. 2017. The simpler the better: A unified approach to predicting original taxi demands based on large-scale online platforms. In ACM SIGKDD. 1653–1662.
[39]
Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu. 2018. A unified approach to route planning for shared mobility. PVLDB 11, 11 (2018), 1633–1646.
[40]
G. Trajcevski and P. Scheuermann. 2003. Triggers and continuous queries in moving objects database. In DEXA. 905–910.
[41]
F. Valdés and R. H. Güting. 2017. Efficient multi-attribute analysis for trajectories: A case study for aircraft. In ACM SIGSPATIAL. 88:1–88:4.
[42]
F. Valdés and R. Hartmut Güting. 2017. Index-supported pattern matching on tuples of time-dependent values. GeoInformatica 21, 3 (2017), 429–458.
[43]
F. Valdés and R. H. Güting. 2019. A framework for efficient multi-attribute movement data analysis. VLDB J. 28, 4 (2019), 427–449.
[44]
S. Wang, Z. Bao, J. Shane Culpepper, T. Sellis, and G. Cong. 2018. Reverse k nearest neighbor search over trajectories. IEEE Trans. Knowl. Data Eng. 30, 4 (2018), 757–771.
[45]
S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, M. Sanderson, and X. Qin. 2017. Answering top-k exemplar trajectory queries. In ICDE. 597–608.
[46]
S. Wang, Z. Bao, J. Shane Culpepper, Z. Xie, Q. Liu, and X. Qin. 2018. Torch: A search engine for trajectory data. In SIGIR. 535–544.
[47]
D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. 2012. Joint top-K spatial keyword query processing. IEEE Trans. Knowl. Data Eng. 24, 10 (2012), 1889–1903.
[48]
W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton. 2013. Predicting Query Execution Time: Are Optimizer Cost Models Really Unusable?IEEE Computer Society, 1081–1092.
[49]
D. Xie, F. Li, and J. M. Phillips. 2017. Distributed trajectory similarity search. Proc. VLDB 10, 11 (2017), 1478–1489.
[50]
J. Xu and R. H. Güting. 2013. A generic data model for moving objects. GeoInformatica 17, 1 (2013), 125–172.
[51]
J. Xu, R. H. Güting, and Y. Gao. 2018. Continuous k nearest neighbor queries over large multi-attribute trajectories: A systematic approach. GeoInformatica 22, 4 (2018), 723–766.
[52]
J. Xu, H. Lu, and R. H. Güting. 2018. Range queries on multi-attribute trajectories. IEEE Trans. Knowl. Data Eng. 30, 6 (2018), 1206–1211.
[53]
Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. 2011. SeMiTri: A framework for semantic annotation of heterogeneous trajectories. In EDBT. 259–270.
[54]
Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. 2013. Semantic trajectories: Mobility data computation and annotation. ACM TIST 4, 3 (2013), 49:1–49:38.
[55]
C. Zhang, J. Han, L. Shou, J. Lu, and T. F. La Porta. 2014. Splitter: Mining fine-grained sequential patterns in semantic trajectories. Proc. VLDB 7, 9 (2014), 769–780.
[56]
W. E. Zhang, Q. Z. Sheng, Y. Qin, K. Taylor, and L. Yao. 2018. Learning-based SPARQL query performance modeling and prediction. World Wide Web 21, 4 (2018), 1015–1035.
[57]
B. Zheng, N. J. Yuan, K. Zheng, X. Xie, S. W. Sadiq, and X. Zhou. 2015. Approximate keyword search in semantic trajectory database. In ICDE. 975–986.
[58]
K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. 2013. Towards efficient search for activity trajectories. In ICDE. 230–241.
[59]
K. Zheng and H. Su. 2015. Go beyond raw trajectory data: Quality and semantics. IEEE Data Eng. Bull. 38, 2 (2015), 27–34.

Cited By

View all
  • (2024)Strengthening Cooperative Consensus in Multi-Robot ConfrontationACM Transactions on Intelligent Systems and Technology10.1145/363937115:2(1-27)Online publication date: 22-Feb-2024
  • (2023)Dynamic Weights and Prior Reward in Policy Fusion for Compound Agent LearningACM Transactions on Intelligent Systems and Technology10.1145/362340514:6(1-28)Online publication date: 14-Nov-2023
  • (undefined)Robust Recommender Systems with Rating Flip NoiseACM Transactions on Intelligent Systems and Technology10.1145/3641285

Index Terms

  1. A Query Optimizer for Range Queries over Multi-Attribute Trajectories

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Intelligent Systems and Technology
      ACM Transactions on Intelligent Systems and Technology  Volume 14, Issue 1
      February 2023
      487 pages
      ISSN:2157-6904
      EISSN:2157-6912
      DOI:10.1145/3570136
      • Editor:
      • Huan Liu
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 27 January 2023
      Online AM: 10 September 2022
      Accepted: 19 July 2022
      Revised: 15 June 2022
      Received: 05 December 2021
      Published in TIST Volume 14, Issue 1

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Multi-attribute trajectories
      2. range queries
      3. optimizing

      Qualifiers

      • Research-article
      • Refereed

      Funding Sources

      • NSFC
      • Natural Science Foundation of Jiangsu Province of China

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)55
      • Downloads (Last 6 weeks)5
      Reflects downloads up to 02 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Strengthening Cooperative Consensus in Multi-Robot ConfrontationACM Transactions on Intelligent Systems and Technology10.1145/363937115:2(1-27)Online publication date: 22-Feb-2024
      • (2023)Dynamic Weights and Prior Reward in Policy Fusion for Compound Agent LearningACM Transactions on Intelligent Systems and Technology10.1145/362340514:6(1-28)Online publication date: 14-Nov-2023
      • (undefined)Robust Recommender Systems with Rating Flip NoiseACM Transactions on Intelligent Systems and Technology10.1145/3641285

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      Full Text

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media