skip to main content
10.1145/3557919.3565812acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article
Open Access

MapReader: a computer vision pipeline for the semantic exploration of maps at scale

Published:11 November 2022Publication History

ABSTRACT

We present MapReader, a free, open-source software library written in Python for analyzing large map collections. MapReader allows users with little computer vision expertise to i) retrieve maps via web-servers; ii) preprocess and divide them into patches; iii) annotate patches; iv) train, fine-tune, and evaluate deep neural network models; and v) create structured data about map content. We demonstrate how MapReader enables historians to interpret a collection of ≈16K nineteenth-century maps of Britain (≈30.5M patches), foregrounding the challenge of translating visual markers into machine-readable data. We present a case study focusing on rail and buildings. We also show how the outputs from the MapReader pipeline can be linked to other, external datasets. We release ≈62K manually annotated patches used here for training and evaluating the models.

References

  1. Martin Abadi et al. 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.Google ScholarGoogle Scholar
  2. James R Akerman. 2017. Decolonizing the map: Cartography from colony to nation. University of Chicago Press.Google ScholarGoogle Scholar
  3. Mariona Coll Ardanuy, Kaspar Beelen, Jon Lawrence, Katherine McDonough, Federico Nanni, Joshua Rhodes, Giorgia Tolfo, and Daniel CS Wilson. 2021. Station to station: linking and enriching historical british railway data. Proceedings http://ceur-ws.org ISSN, 1613, 0073.Google ScholarGoogle Scholar
  4. Mariona Coll Ardanuy, Kasra Hosseini, Katherine McDonough, Amrey Krause, Daniel van Strien, and Federico Nanni. 2020. A deep learning approach to geographical candidate selection through toponym matching. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems, 385--388.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Taylor Arnold and Lauren Tilton. 2019. Distant viewing: analyzing large visual corpora. Digital Scholarship in the Humanities, 34, Supplement_1, i3-i16.Google ScholarGoogle ScholarCross RefCross Ref
  6. Brian Baily. 2007. The extraction of digital vector data from historic land use maps of great britain using image processing techniques. E-perimetron, 2, 4, 209--223.Google ScholarGoogle Scholar
  7. Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18, 9, 509--517.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dan Bogart. 2014. The transport revolution in industrialising britain. The Cambridge economic history of modern Britain, 1, 368--391.Google ScholarGoogle Scholar
  9. Benedikt Budig. 2018. Extracting spatial information from historical maps: algorithms and interaction. BoD-Books on Demand.Google ScholarGoogle Scholar
  10. Yao-Yi Chiang, Weiwei Duan, Stefan Leyk, Johannes H Uhl, and Craig A Knoblock. 2020. Historical map applications and processing technologies. In Using Historical Maps in Scientific Studies. Springer, 9--36.Google ScholarGoogle Scholar
  11. Yao-Yi Chiang, Weiwei Duan, Stefan Leyk, Johannes H Uhl, and Craig A Knoblock. 2020. Training deep learning models for geographic feature recognition from historical maps. In Using historical maps in scientific studies. Springer, 65--98.Google ScholarGoogle Scholar
  12. Yao-Yi Chiang and Craig A Knoblock. 2010. Strabo: a system for extracting road vector data from raster maps. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, 544--545.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Nan Z Da. 2019. The computational case against computational literary studies. Critical inquiry, 45, 3, 601--639.Google ScholarGoogle Scholar
  14. Alexey Dosovitskiy et al. 2020. An image is worth 16×16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.Google ScholarGoogle Scholar
  15. Matthew H Edney. 2019. Cartography: The ideal and its history. University of Chicago Press.Google ScholarGoogle ScholarCross RefCross Ref
  16. Manfred M. Fischer and Arthur Getis, (Eds.) 2010. Spatial autocorrelation. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, 255--278. isbn: 978-3-642-03647-7. Google ScholarGoogle ScholarCross RefCross Ref
  17. J Brian Harley. 1988. Silences and secrecy: the hidden agenda of cartography in early modern europe. Imago mundi, 40, 1, 57--76.Google ScholarGoogle Scholar
  18. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770--778.Google ScholarGoogle ScholarCross RefCross Ref
  19. Stephan Heblich, Alex Trew, and Yanos Zylberberg. 2021. East-side story: historical pollution and persistent neighborhood sorting. Journal of Political Economy, 129, 5, 1508--1552.Google ScholarGoogle ScholarCross RefCross Ref
  20. Robert Hecht, Hendrik Herold, Martin Behnisch, and Mathias Jehling. 2018. Mapping long-term dynamics of population and dwellings based on a multi-temporal analysis of urban morphologies. ISPRS International Journal of Geo-Information, 8, 1, 2.Google ScholarGoogle ScholarCross RefCross Ref
  21. Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science, 313, 5786, 504--507.Google ScholarGoogle Scholar
  22. Kasra Hosseini, Katherine McDonough, Daniel van Strien, Olivia Vane, and Daniel CS Wilson. 2021. Maps of a nation? the digitized ordnance survey for new historical research. Journal of Victorian Culture, 26, 2, 284--299.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kasra Hosseini, Federico Nanni, and Mariona Coll Ardanuy. 2020. Deezymatch: a flexible deep learning approach to fuzzy string matching. In Proceedings of the 2020 conference on empirical methods in natural language processing: System demonstrations, 62--69.Google ScholarGoogle ScholarCross RefCross Ref
  24. Kasra Hosseini, Daniel C.S. Wilson, Kaspar Beelen, and Katherine McDonough. Mapreader_data_sigspatial_2022. Version v0.3.3. Zenodo, (Oct. 2022). Google ScholarGoogle ScholarCross RefCross Ref
  25. Jeremy Howard and Sylvain Gugger. 2020. Fastai: a layered api for deep learning. Information, 11, 2, 108.Google ScholarGoogle ScholarCross RefCross Ref
  26. Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. 2009. Exploring strategies for training deep neural networks. Journal of machine learning research, 10, 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Stefan Leyk, Johannes H Uhl, Dylan S Connor, Anna E Braswell, Nathan Mietkiewicz, Jennifer K Balch, and Myron Gutmann. 2020. Two centuries of settlement and urban development in the united states. Science advances, 6, 23, eaba2937.Google ScholarGoogle Scholar
  28. Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. 2021. Swin transformer: hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 10012--10022.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101.Google ScholarGoogle Scholar
  30. Adam Paszke et al. 2019. Pytorch: an imperative style, high-performance deep learning library. (2019). arXiv: 1912.01703 [cs.LG].Google ScholarGoogle Scholar
  31. F. Pedregosa et al. 2011. Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12, 2825--2830.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Rémi Petitpierre, Frédéric Kaplan, and Isabella di Lenardo. 2021. Generic semantic segmentation of historical maps. Proceedings http://ceur-ws.org ISSN, 1613, 0073.Google ScholarGoogle Scholar
  33. Mingxing Tan and Quoc Le. 2019. Efficientnet: rethinking model scaling for convolutional neural networks. In International conference on machine learning. PMLR, 6105--6114.Google ScholarGoogle Scholar
  34. Johannes H Uhl, Dylan S Connor, Stefan Leyk, and Anna E Braswell. 2020. Urban spatial development in the united states from 1910 to 2010: a novel data-driven perspective. Available at SSRN 3537768.Google ScholarGoogle Scholar
  35. Johannes H Uhl, Stefan Leyk, Yao-Yi Chiang, and Craig A Knoblock. 2022. Towards the automated large-scale reconstruction of past road networks from historical maps. Computers, environment and urban systems, 94, 101794.Google ScholarGoogle Scholar
  36. Johannes H Uhl, Stefan Leyk, Caitlin M McShane, Anna E Braswell, Dylan S Connor, and Deborah Balk. 2021. Fine-grained, spatiotemporal datasets measuring 200 years of land development in the united states. Earth system science data, 13, 1, 119--153.Google ScholarGoogle Scholar
  37. Xiaofang Wang, Dan Kondratyuk, Eric Christiansen, Kris M Kitani, Yair Alon, and Elad Eban. 2020. Wisdom of committees: an overlooked approach to faster and more accurate models. arXiv preprint arXiv:2012.01988.Google ScholarGoogle Scholar
  38. Melvin Wevers and Thomas Smits. 2020. The visual digital turn: using neural networks to study historical images. Digital Scholarship in the Humanities, 35, 1, 194--207.Google ScholarGoogle Scholar
  39. Kären Wigen and Caroline Winterer. 2020. Time in maps: from the Age of Discovery to our digital era. University of Chicago Press.Google ScholarGoogle Scholar
  40. Ross Wightman. 2019. Pytorch image models. https://github.com/rwightman/pytorch-image-models. (2019). Google ScholarGoogle ScholarCross RefCross Ref
  41. I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. 2019. Billion-scale semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546.Google ScholarGoogle Scholar
  42. Hang Zhang et al. 2022. Resnest: split-attention networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2736--2746.Google ScholarGoogle Scholar

Index Terms

  1. MapReader: a computer vision pipeline for the semantic exploration of maps at scale

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              GeoHumanities '22: Proceedings of the 6th ACM SIGSPATIAL International Workshop on Geospatial Humanities
              November 2022
              36 pages
              ISBN:9781450395335
              DOI:10.1145/3557919

              Copyright © 2022 Owner/Author

              This work is licensed under a Creative Commons Attribution International 4.0 License.

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 11 November 2022

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              Overall Acceptance Rate15of21submissions,71%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader