skip to main content
10.1145/3557995.3566120acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Using mobile network data to color epidemic risk maps

Published:01 November 2022Publication History

ABSTRACT

In this paper we propose a method for using mobile network data to detect potential COVID-19 hospitalizations and derive corresponding epidemic risk maps. We apply our methods to a dataset from more than 2 million cellphones, collected over the months of March and April in 2020 by a British mobile network provider. The method consists of different algorithms, including detection, filtering, validation and fine-tuning. The approach detected over 2,800 potentially hospitalized individuals, yielding a 98.6% agreement with released public records of patients admitted to NHS hospitals. Analyzing the mobility pattern of these individuals prior to their potential hospitalization, we present a series of risk maps. Compared with census-based maps, our risk maps indicate that the areas of highest risk are not necessarily the most densely populated ones. We also show that the areas of highest risk may change from day to day. Finally, we observe that hospitalized individuals tended to have a higher average mobility than non-hospitalized ones. Overall, we conclude that the rich spatio-temporal information extracted from mobile network data may benefit both the mobile-based technologies and the policies that are being developed against existing and future epidemics.

References

  1. R. Agarwal and A. Banerjee. 2020. Infection Risk Score: Identifying the risk of infection propagation based on human contact. In ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19.Google ScholarGoogle Scholar
  2. J. Álvarez, C. Baquero, E. Cabana, J. P. Champati, A. F. Anta, D. Frey, A. García-Agúndez, C. Georgiou, M. Goessens, H. Hernández, et al. 2021. Estimating Active Cases of COVID-19. arXiv preprint arXiv:2108.03284.Google ScholarGoogle Scholar
  3. L. Bengtsson, J. Gaudart, X. Lu, S. Moore, E. Wetter, K. Sallah, S. Rebaudet, and R. Piarroux. 2015. Using mobile phone data to predict the spatial spread of cholera. Scientific reports.Google ScholarGoogle Scholar
  4. V. D. Blondel, A. Decuyper, and G. Krings. 2015. A survey of results on mobile phone datasets analysis. EPJ data science.Google ScholarGoogle Scholar
  5. G. Bobashev, I. Segovia-Dominguez, Y. R. Gel, J. Rineer, S. Rhea, and H. Sui. 2020. Geospatial forecasting of COVID-19 spread and risk of reaching hospital capacity. SIGSPATIAL Special.Google ScholarGoogle Scholar
  6. L. Bradford, M. Aboy, and K. Liddell. 2020. COVID-19 contact tracing apps: a stress test for privacy, the GDPR, and data protection regimes. Journal of Law and the Biosciences.Google ScholarGoogle ScholarCross RefCross Ref
  7. F. Calabrese, L. Ferrari, and V. D. Blondel. 2014. Urban sensing using mobile phone network data: a survey of research. ACM CSUR.Google ScholarGoogle Scholar
  8. M. A. Carrillo, A. Kroeger, R. C. Sanchez, S. D. Monsalve, and S. Runge-Ranzinger. 2021. The use of mobile phones for the prevention and control of arboviral diseases: a scoping review. BMC public health.Google ScholarGoogle Scholar
  9. M. Cebrian. 2021. The past, present and future of digital contact tracing. Nature Electronics.Google ScholarGoogle Scholar
  10. D. Crichton. 1999. The risk triangle. Natural disaster management.Google ScholarGoogle Scholar
  11. NHS Dataset. 2021. National Health Service (NHS) in England. Retrieved June 20, 2021 from https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/Google ScholarGoogle Scholar
  12. ONS Population Dataset. 2021. Office for National Statistics. Retrieved June 20, 2021 from http://www.ons.gov.ukGoogle ScholarGoogle Scholar
  13. S. Davalbhakta, S. Advani, S. Kumar, V. Agarwal, S. Bhoyar, E. Fedirko, D. P. Misra, A. Goel, and L. Gupta. 2020. A systematic review of smartphone applications available for corona virus disease 2019 (COVID19) and the assessment of their quality using the mobile application rating scale (MARS). Journal of medical systems.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. W. Do Lee, M. Qian, and T. Schwanen. 2021. The association between socioeconomic status and mobility reductions in the early stage of England's COVID-19 epidemic. Health & Place.Google ScholarGoogle Scholar
  15. E. Dong, H. Du, and L. Gardner. 2020. An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases.Google ScholarGoogle Scholar
  16. Eurostat. 2021. Eurostat Databases. Retrieved June 20, 2021 from https://ec.europa.eu/eurostat/data/databaseGoogle ScholarGoogle Scholar
  17. Z. Fan, X. Song, Y. Liu, Z. Zhang, C. Yang, Q. Chen, R. Jiang, and R. Shibasaki. 2020. Human mobility based individual-level epidemic simulation platform. SIGSPATIAL Special.Google ScholarGoogle Scholar
  18. E. Frias-Martinez, G. Williamson, and V. Frias-Martinez. 2013. Simulation of epidemic spread using cell-phone call data: H1N1 case study. In Netmob'13.Google ScholarGoogle Scholar
  19. S. Gao, J. Rao, Y. Kang, Y. Liang, and J. Kruse. 2020. Mapping county-level mobility pattern changes in the United States in response to COVID-19. SIGSPATIAL Special.Google ScholarGoogle Scholar
  20. A. Garcia-Agundez, O. Ojo, H. Hernandez, C. Baquero, D. Frey, C. Georgiou, M. Goessens, R. E. Lillo, R. Menezes, N. Nicolaou, et al. 2021. Estimating the COVID-19 Prevalence in Spain with Indirect Reporting via Open Surveys. Frontiers in Public Health.Google ScholarGoogle Scholar
  21. Google. 2021. Google COVID-19 community mobility reports. Retrieved June 20, 2021 from https://www.google.com/covid19/mobility/Google ScholarGoogle Scholar
  22. D. Gundogdu, O. Incel, A. Salah, and B. Lepri. 2016. Countrywide arrhythmia: emergency event detection using mobile phone data. EPJ Data Science.Google ScholarGoogle Scholar
  23. J. A. Hardie and P. A. Brennan. 2020. Are you surgically current? Lessons from aviation for returning to non-urgent surgery following COVID-19. British Journal of Oral and Maxillofacial Surgery.Google ScholarGoogle Scholar
  24. S. Hazarie, D. Soriano-Paños, A. Arenas, J. Gómez-Gardeñes, and G. Ghoshal. 2021. Interplay between population density and mobility in determining the spread of epidemics in cities. Communications Physics.Google ScholarGoogle Scholar
  25. S. Isaacman, V. Frias-Martinez, and E. Frias-Martinez. 2018. Modeling human migration patterns during drought conditions in La Guajira, Colombia. In ACM SIGCAS COMPASS.Google ScholarGoogle Scholar
  26. J. S. Jia, X. Lu, Y. Yuan, G. Xu, J. Jia, and N. A. Christakis. 2020. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature.Google ScholarGoogle Scholar
  27. M. Kiamari, G. Ramachandran, Q. Nguyen, E. Pereira, J. Holm, and B. Krishnamachari. 2020. COVID-19 Risk Estimation using a Time-varying SIR-model. In ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19.Google ScholarGoogle Scholar
  28. N. E. Kogan, L. Clemente, P. Liautaud, J. Kaashoek, N. B. Link, A. T. Nguyen, F. S. Lu, P. Huybers, B. Resch, C. Havas, et al. 2021. An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time. Science Advances.Google ScholarGoogle Scholar
  29. A. Lima, M. De Domenico, V. Pejovic, and M. Musolesi. 2015. Disease containment strategies based on mobility and information dissemination. Scientific reports.Google ScholarGoogle Scholar
  30. T. Louail, M. Lenormand, O. G. C. Ros, M. Picornell, R. Herranz, E. Frias-Martinez, J. J. Ramasco, and M. Barthelemy. 2014. From mobile phone data to the spatial structure of cities. Scientific reports.Google ScholarGoogle Scholar
  31. A. Lutu, D. Perino, M. Bagnulo, E. Frias-Martinez, and J. Khangosstar. 2020. A characterization of the COVID-19 pandemic impact on a mobile network operator traffic. In Proceedings of the ACM internet measurement conference.Google ScholarGoogle Scholar
  32. L. Mao, L. Yin, X. Song, and S. Mei. 2016. Mapping intra-urban transmission risk of dengue fever with big hourly cellphone data. Acta tropica.Google ScholarGoogle Scholar
  33. M. Mokbel, S. Abbar, and R. Stanojevic. 2020. Contact tracing: Beyond the apps. SIGSPATIAL Special.Google ScholarGoogle Scholar
  34. Press News. 2021. Nightingale Temporary Hospital press news. Retrieved April 20, 2021 from https://www.bmj.com/content/369/bmj.m1860Google ScholarGoogle Scholar
  35. NHS. 2021. NHS Trusts. Retrieved June 20, 2021 from https://www.nhs.uk/Google ScholarGoogle Scholar
  36. P. Nouvellet, S. Bhatia, A. Cori, K. Ainslie, M. Baguelin, S. Bhatt, A. Boonyasiri, N. F. Brazeau, L. Cattarino, L. V. Cooper, et al. 2021. Reduction in mobility and COVID-19 transmission. Nature communications.Google ScholarGoogle Scholar
  37. O. Ojo, A. García-Agundez, B. Girault, H. Hernández, E. Cabana, A. García-García, P. Arabshahi, C. Baquero, P. Casari, E. J. Ferreira, et al. 2020. CoronaSurveys: Using Surveys with Indirect Reporting to Estimate the Incidence and Evolution of Epidemics. arXiv preprint arXiv:2005.12783.Google ScholarGoogle Scholar
  38. N. Oliver, J. X. Barber, K. Roomp, and K. Roomp. 2020. Assessing the Impact of the COVID-19 Pandemic in Spain: Large-Scale, Online, Self-Reported Population Survey. Journal of medical Internet research.Google ScholarGoogle ScholarCross RefCross Ref
  39. World Health Organization. 2021. Coronavirus disease (COVID-19). Retrieved June 20, 2021 from https://www.who.int/health-topics/coronavirus#tab=tab_3Google ScholarGoogle Scholar
  40. U. Qazi, M. Imran, and F. Ofli. 2020. GeoCoV19: a dataset of hundreds of millions of multilingual COVID-19 tweets with location information. SIGSPATIAL Special.Google ScholarGoogle Scholar
  41. J. Rajarethinam, J. Ong, S. Lim, Y. Tay, W. Bounliphone, C. Chong, G. Yap, and L. Ng. 2019. Using human movement data to identify potential areas of Zika transmission: case study of the largest Zika cluster in Singapore. International journal of environmental research and public health.Google ScholarGoogle Scholar
  42. E. M. Rees, E. S. Nightingale, Y. Jafari, N. R. Waterlow, S. Clifford, C. A. B. Pearson, T. Jombart, S. R. Procter, G. M. Knight, CMMID Working Group, et al. 2020. COVID-19 length of hospital stay: a systematic review and data synthesis. BMC medicine.Google ScholarGoogle Scholar
  43. S. Rubrichi, Z. Smoreda, and M. Musolesi. 2018. A comparison of spatial-based targeted disease mitigation strategies using mobile phone data. EPJ Data Science.Google ScholarGoogle Scholar
  44. M. Salathe, L. Bengtsson, T. J. Bodnar, D. D. Brewer, J. S. Brownstein, C. Buckee, E. M. Campbell, C. Cattuto, S. Khandelwal, P. L. Mabry, et al. 2012. Digital epidemiology. PLoS Comput Biol.Google ScholarGoogle Scholar
  45. R. Souza, R. Assunção, D. Neill, and W. Meira Jr. 2019. Detecting spatial clusters of disease infection risk using sparsely sampled social media mobility patterns. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.Google ScholarGoogle Scholar
  46. Statista. 2021. Statista. Retrieved June 20, 2021 from https://www.statista.com/Google ScholarGoogle Scholar
  47. Z. Sun, L. Di, W. Sprigg, D. Tong, and M. Casal. 2020. Community venue exposure risk estimator for the COVID-19 pandemic. Health & Place.Google ScholarGoogle Scholar
  48. A. J. Tatem, Z. Huang, C. Narib, U. Kumar, D. Kandula, D. K. Pindolia, D. L. Smith, J. M. Cohen, B. Graupe, P. Uusiku, et al. 2014. Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning. Malaria journal.Google ScholarGoogle Scholar
  49. G. Thakur, K. Sparks, A. Berres, V. Tansakul, S. Chinthavali, M. Whitehead, E. Schmidt, H. Xu, J. Fan, D. Spears, et al. 2020. COVID-19 joint pandemic modeling and analysis platform. In ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M. Tizzoni, P. Bajardi, A. Decuyper, G. K. K. King, C. M. Schneider, V. Blondel, Z. Smoreda, M. C. González, and V. Colizza. 2014. On the use of human mobility proxies for modeling epidemics. PLoS Comput Biol.Google ScholarGoogle Scholar
  51. A. Wesolowski, T. Qureshi, M. F. Boni, Pål R. Sundsøy, M. A. Johansson, S. B. Rasheed, K. Engø-Monsen, and C. O. Buckee. 2015. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proceedings of the National Academy of Sciences.Google ScholarGoogle Scholar
  52. Y. Xie, S. Shekhar, and Y. Li. 2022. Statistically-robust clustering techniques for mapping spatial hotspots: A survey. Comput. Surveys (2022).Google ScholarGoogle Scholar

Index Terms

  1. Using mobile network data to color epidemic risk maps

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                SpatialEpi '22: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Spatial Computing for Epidemiology
                November 2022
                50 pages
                ISBN:9781450395434
                DOI:10.1145/3557995

                Copyright © 2022 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 November 2022

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader