skip to main content
10.1145/3559400.3561995acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

A Collaborative Multi-robot Platform for the Distributed Fabrication of Three-dimensional Fibrous Networks (Spatial Lacing)

Authors Info & Claims
Published:26 October 2022Publication History

ABSTRACT

This research presents a collaborative multi-robot strategy for the distributed fabrication of Spatial Lacing - a novel system of lightweight, multi-topology fiber structures enabled by parallel manipulation of filament materials. The parallelized fabrication logic, which takes inspiration from textile production methods, is inherently different from existing construction techniques using continuous filaments and poses new challenges for fabrication. The paper proposes a distributed cyber-physical platform with mobile robots that can exceed size and flexibility limitations of industrial machinery. A hybrid behavior-based control schema is developed where robotic behaviors are abstracted from the traditional textile craft of bobbin lace-making and adapted for robotic execution through coordinated collaborative action sequences, creating a new robotic action space for filament structures. Parallel task execution, real-time sensor feedback, and the coordination of multiple distributed agents is achieved through a multi-threaded software architecture. This paper focuses on the development of the cyber-physical fabrication platform including custom robotic hardware, derivation of robotic behaviors, task generation and coordination, and multi-agent communication protocols. The research finds its point of departure from textile craft processes and demonstrates new potentials in construction with filament materials when multi-robot systems perform coordinated tasks that depend on simultaneous actions. It culminates in the choreography of two mobile robots performing actions required to create a Spatial Lacing node in a parallel, coordinated fashion.

Skip Supplemental Material Section

Supplemental Material

ROBOT_DEMO_v2_Spatial_Lacing.mp4

mp4

28.7 MB

References

  1. 2015. Carriers for braiding machines. In Braiding Technology for Textiles, Yordan Kyosev (Ed.). Elsevier, 153–175. https://doi.org/10.1533/9780857099211.2.153Google ScholarGoogle Scholar
  2. 2015. MQTT Version 3.1.1 Errata 01. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.htmlGoogle ScholarGoogle Scholar
  3. Basem Al-Madani, Anas Al-Roubaiey, and Zubair A. Baig. 2014. Real-Time QoS-Aware Video Streaming: A Comparative and Experimental Study. Advances in Multimedia 2014 (2014), 1–11. https://doi.org/10.1155/2014/164940Google ScholarGoogle ScholarCross RefCross Ref
  4. Niccolò Dambrosio, Christoph Zechmeister, Serban Bodea, Marta Gil Pérez, Bas Rongen, Jan Knippers, and Achim Menges. 2019. Buga Fibre Pavilion: Towards an architectural application of novel fiber composite building systems. In proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture. Acadia Publishing Company, Austin, Texas, 140–149.Google ScholarGoogle Scholar
  5. Daniel Duckworth. 2012. pykalman. https://pykalman.github.io/Google ScholarGoogle Scholar
  6. Rebeca Duque Estrada, Fabian Kannenberg, Hans Jakob Wagner, Maria Yablonina, and Achim Menges. 2020. Spatial winding: cooperative heterogeneous multi-robot system for fibrous structures. Construction Robotics 4, 3-4 (Dec. 2020), 205–215. https://doi.org/10.1007/s41693-020-00036-7Google ScholarGoogle ScholarCross RefCross Ref
  7. Catriona Eschke, Mary Katherine Heinrich, Mostafa Wahby, and Heiko Haman. 2019. Self-Organized Adaptive Paths in Multi-Robot Manufacturing: Reconfigurable and Pattern-Independent Fibre Deployment. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Macau, China, 4086–4091. https://doi.org/10.1109/IROS40897.2019.8967951Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and R. Medina-Carnicer. 2016. Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51 (March 2016), 481–491. https://doi.org/10.1016/j.patcog.2015.09.023Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kyung-Lyong Han, Hyosin Kim, and Jin S. Lee. 2010. The sources of position errors of omni-directional mobile robot with Mecanum wheel. In 2010 IEEE International Conference on Systems, Man and Cybernetics. IEEE, Istanbul, Turkey, 581–586. https://doi.org/10.1109/ICSMC.2010.5642009Google ScholarGoogle ScholarCross RefCross Ref
  10. Mary Katherine Heinrich, Mostafa Wahby, Mohammad Divband Soorati, Daniel Nicolas Hofstadler, Payam Zahadat, Phil Ayres, Kasper Stoy, and Heiko Hamann. 2016. Self-Organized Construction with Continuous Building Material: Higher Flexibility Based on Braided Structures. In 2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W). IEEE, Augsburg, Germany, 154–159. https://doi.org/10.1109/FAS-W.2016.43Google ScholarGoogle Scholar
  11. Matthew Humphreys. 2003. The Use of Polymer Composites in Construction, J Yang (Ed.). Queensland University of Technology, Brisbane, Australia, 1–9.Google ScholarGoogle Scholar
  12. Michail Kalaitzakis, Sabrina Carroll, Anand Ambrosi, Camden Whitehead, and Nikolaos Vitzilaios. 2020. Experimental Comparison of Fiducial Markers for Pose Estimation. In 2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, Athens, Greece, 781–789. https://doi.org/10.1109/ICUAS48674.2020.9213977Google ScholarGoogle Scholar
  13. Ho Chuen Kam, Ying Kin Yu, and Kin Hong Wong. 2018. An Improvement on ArUco Marker for Pose Tracking Using Kalman Filter. In 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). IEEE, Busan, 65–69. https://doi.org/10.1109/SNPD.2018.8441049Google ScholarGoogle Scholar
  14. Markus Kayser, Levi Cai, Sara Falcone, Christoph Bader, Nassia Inglessis, Barrak Darweesh, and Neri Oxman. 2018. FIBERBOTS: an autonomous swarm-based robotic system for digital fabrication of fiber-based composites. Construction Robotics 2, 1-4 (Dec. 2018), 67–79. https://doi.org/10.1007/s41693-018-0013-yGoogle ScholarGoogle ScholarCross RefCross Ref
  15. August Lehrecke, Cody Tucker, Xiliu Yang, Piotr Baszynski, and Hanaa Dahy. 2021. Tailored Lace: Moldless Fabrication of 3D Bio-Composite Structures through an Integrative Design and Fabrication Process. Applied Sciences 11, 22 (Nov. 2021), 10989. https://doi.org/10.3390/app112210989Google ScholarGoogle ScholarCross RefCross Ref
  16. Pibo Ma, Gaoming Jiang, and Zhe Gao. 2017. 11 The three dimensional textile structures for composites. In Advanced Composite Materials: Properties and Applications. De Gruyter Open, 497–526. https://doi.org/10.1515/9783110574432-011Google ScholarGoogle Scholar
  17. Maja J. Mataric. 1997. Behaviour-based control: examples from navigation, learning, and group behaviour. Journal of Experimental & Theoretical Artificial Intelligence 9, 2-3 (April 1997), 323–336. https://doi.org/10.1080/095281397147149Google ScholarGoogle ScholarCross RefCross Ref
  18. Maja J. Matarić. 2007. The robotics primer. The MIT Press, Cambridge, Mass. OCLC: ocm79002109.Google ScholarGoogle Scholar
  19. Maja J. Matarić and François Michaud. 2008. Behavior-Based Systems. In Springer Handbook of Robotics, Bruno Siciliano and Oussama Khatib (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 891–909. https://doi.org/10.1007/978-3-540-30301-5_39Google ScholarGoogle Scholar
  20. Myo Maung Maung, Maung Maung Latt, and Chaw Myat Nwe. 2018. DC Motor Angular Position Control using PID Controller with Friction Compensation. International Journal of Scientific and Research Publications 8, 11 (Nov. 2018). https://doi.org/10.29322/IJSRP.8.11.2018.p8321Google ScholarGoogle ScholarCross RefCross Ref
  21. Robert McNeel and Others. 2010. Rhinoceros 3D.Google ScholarGoogle Scholar
  22. Achim Menges and Jan Knippers. 2015. Fibrous Tectonics: Fibrous Tectonics. Architectural Design 85, 5 (Sept. 2015), 40–47. https://doi.org/10.1002/ad.1952Google ScholarGoogle Scholar
  23. Ammar Mirjan, Federico Augugliaro, Raffaello D’Andrea, Fabio Gramazio, and Matthias Kohler. 2016. Building a Bridge with Flying Robots. In Robotic Fabrication in Architecture, Art and Design 2016, Dagmar Reinhardt, Rob Saunders, and Jane Burry (Eds.). Springer International Publishing, Cham, 34–47. https://doi.org/10.1007/978-3-319-26378-6_3Google ScholarGoogle ScholarCross RefCross Ref
  24. Marshall Prado, Moritz Dörstelmann, Tobias Schwinn, Achim Menges, and Jan Knippers. 2014. Core-Less Filament Winding. In Robotic Fabrication in Architecture, Art and Design 2014, Wes McGeeand Monica Ponce de Leon (Eds.). Springer International Publishing, Cham, 275–289. https://doi.org/10.1007/978-3-319-04663-1_19Google ScholarGoogle ScholarCross RefCross Ref
  25. Jun Qian, Bin Zi, Daoming Wang, Yangang Ma, and Dan Zhang. 2017. The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System. Sensors 17, 9 (Sept. 2017), 2073. https://doi.org/10.3390/s17092073Google ScholarGoogle ScholarCross RefCross Ref
  26. Steffen Reichert, Tobias Schwinn, Riccardo La Magna, Frédéric Waimer, Jan Knippers, and Achim Menges. 2014. Fibrous structures: An integrative approach to design computation, simulation and fabrication for lightweight, glass and carbon fibre composite structures in architecture based on biomimetic design principles. Computer-Aided Design 52 (July 2014), 27–39. https://doi.org/10.1016/j.cad.2014.02.005Google ScholarGoogle Scholar
  27. Francisco J. Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-Carnicer. 2018. Speeded up detection of squared fiducial markers. Image and Vision Computing 76 (Aug. 2018), 38–47. https://doi.org/10.1016/j.imavis.2018.05.004Google ScholarGoogle Scholar
  28. Klaus-Dieter Thoben, Stefan Wiesner, Thorsten Wuest, BIBA – Bremer Institut für Produktion und Logistik GmbH, the University of Bremen, Faculty of Production Engineering, University of Bremen, Bremen, Germany, and Industrial and Management Systems Engineering,. 2017. “Industrie 4.0” and Smart Manufacturing – A Review of Research Issues and Application Examples. International Journal of Automation Technology 11, 1 (Jan. 2017), 4–16. https://doi.org/10.20965/ijat.2017.p0004Google ScholarGoogle ScholarCross RefCross Ref
  29. Lauren Vasey, Benjamin Felbrich, Marshall Prado, Behrooz Tahanzadeh, and Achim Menges. 2020. Physically distributed multi-robot coordination and collaboration in construction: A case study in long span coreless filament winding for fiber composites. Construction Robotics 4, 1-2 (June 2020), 3–18. https://doi.org/10.1007/s41693-020-00031-yGoogle ScholarGoogle ScholarCross RefCross Ref
  30. Frédéric Waimer, Riccardo La Magna, Steffen Reichert, Tobias Schwinn, Achim Menges, and Jan Knippers. 2013. Integrated design methods for the simulation of fibre-based structures. (2013). https://doi.org/10.18419/OPUS-104 Publisher: Universität Stuttgart.Google ScholarGoogle Scholar
  31. Peng Xiong, Bitao Long, Zhengfu Lu, Xuwu Liu, and Yulian Jiang. 2018. Multi-robot Synchronous Control Based on Multi-thread:. Beijing, China. https://doi.org/10.2991/cmsa-18.2018.71Google ScholarGoogle ScholarCross RefCross Ref
  32. Maria Yablonina and Achim Menges. 2019a. Distributed Fabrication: Cooperative Making with Larger Groups of Smaller Machines. Architectural Design 89, 2 (March 2019), 62–69. https://doi.org/10.1002/ad.2413Google ScholarGoogle ScholarCross RefCross Ref
  33. Maria Yablonina and Achim Menges. 2019b. Towards the Development of Fabrication Machine Species for Filament Materials. In Robotic Fabrication in Architecture, Art and Design 2018, Jan Willmann, Philippe Block, Marco Hutter, Kendra Byrne, and Tim Schork (Eds.). Springer International Publishing, Cham, 152–166. https://doi.org/10.1007/978-3-319-92294-2_12Google ScholarGoogle Scholar
  34. Xiliu Yang, August Lehrecke, Cody Tucker, Rebeca Duque Estrada, Mathias Maierhofer, and Achim Menges. 2023. Spatial Lacing: A Novel Composite Material System for Fibrous Networks. In Towards Radical Regeneration, Christoph Gengnagel, Olivier Baverel, Giovanni Betti, Mariana Popescu, Mette Ramsgaard Thomsen, and Jan Wurm (Eds.). Springer International Publishing, Cham, 556–568. https://doi.org/10.1007/978-3-031-13249-0_44Google ScholarGoogle Scholar

Index Terms

  1. A Collaborative Multi-robot Platform for the Distributed Fabrication of Three-dimensional Fibrous Networks (Spatial Lacing)

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format