skip to main content
10.1145/3563657.3596008acmconferencesArticle/Chapter ViewAbstractPublication PagesdisConference Proceedingsconference-collections
research-article

Architectural Narrative VR: Towards Generatively Designing Natural Walkable Spaces

Published:10 July 2023Publication History

ABSTRACT

The current state of Virtual Reality (VR) presents a limited and underwhelming user experience. Users are restricted from naturally walking beyond the physical boundaries of the real world, unable to fully explore large virtual environments. The virtual manifestation also often mirrors the physical features of the real world, neglecting the limitless possibilities of the virtual universe. In response to this limitation, this pictorial introduces Architectural Narrative VR, a generative environment that dynamically designs spaces on-the-fly. This approach enables users to roam freely within the constraints of their physical space, while the architectural proportions and rhythm of virtual spaces are designed to relate to external factors such as the sequential presentation of content and user behaviour. This work contributes to VR research by exploring new ways of generating virtual spaces that prioritise user-dependent rather than predefined manifestations of the architectural narrative, offering greater potential for immersive and multidimensional user experiences.

References

  1. Niels Christian Nilsson, Stefania Serafin, Frank Steinicke, and Rolf Nordahl. 2018. Natural Walking in Virtual Reality: A Review. Comput. Entertain. 16, 2, Article 8 (April 2018), 22 pages. https://doi.org/10.1145/3180658Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Hansmeyer and B. Dillenburger. 2019. Digital Grotesque II, 2017. In: Retsin, G., Jimenez, M., Claypool, M. and Soler, V. ed. Robotic Building: Architecture in the Age of Automation. München: DETAIL, pp. 48-49. https://doi. org/10.11129/9783955534257-008Google ScholarGoogle Scholar
  3. L.-P. Cheng, E. Ofek, C. Holz, and A. Wilson. 2019. Vroamer: Generating on-the-fly vr experiences while walking inside large, unknown realworld building environments. IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 359-366. https://doi.org/10.1109/ VR.2019.8798074Google ScholarGoogle ScholarCross RefCross Ref
  4. J. Han, A. V. Moere and A. L. Simeone. Fold-able Spaces: An Overt Redirection Approach for Natural Walking in Virtual Reality. 2022. IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 167-175. https://doi.org/10.1109/ VR51125.2022.00035Google ScholarGoogle ScholarCross RefCross Ref
  5. F. Samuel. 2010. Le Corbusier and the Architectural Promenade. Birkhäuser.Google ScholarGoogle Scholar
  6. Le Corbusier. 1964. Oeuvres completes: Vol. II. Editions d'architecture.Google ScholarGoogle Scholar
  7. M. Merleau-Ponty. 1962. Phenomenology of Perception (1st ed.). Taylor & Francis, London, UK. https://doi.org/10.4324/9780203981139Google ScholarGoogle ScholarCross RefCross Ref
  8. D. Martin, S. Nettleton, and C. Buse. 2019. Afecting Care: Maggie's Centres and the Orchestration of Architectural Atmospheres. Social Science & Medicine 240, 112563. https://doi. org/10.1016/j.socscimed.2019.112563Google ScholarGoogle ScholarCross RefCross Ref
  9. T. A. Madsen. 2017. Walking and Sensing at Faaborg Museum. Atmosphere and Walk-along Interviews at the Museum. Nordisk Museologi 2017, 2, 124–141. https://doi.org/10.5617/ nm.6351Google ScholarGoogle Scholar
  10. J. Chuloh, S. Mohammed, and A. Mohammad. 2021. The Analysis of Peter Zumthor's Emotional Architecture in Therme Vals. International Journal of Advanced Research in Engineering Innovation, [S.l.], v. 3, n. 3, p. 98-111.Google ScholarGoogle Scholar
  11. J. Pallasmaa. 2000. From Frame to Framing. Oz, vol. 22, no. 1, pp. 4–9. https://doi. org/10.4148/0888-7802.1346Google ScholarGoogle ScholarCross RefCross Ref
  12. A. Mahdizadehhakak. 2011. New Perception of Virtual Environments, Enhancement of Creativity. 29th eCAADe Conference Proceedings. https:// doi.org/10.52842/conf.ecaade.2011.967Google ScholarGoogle ScholarCross RefCross Ref
  13. R. A. Finke, T. B. Ward, and S. M. Smith. 1992. Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  14. E. Bozgeyikli, A. Raij, S. Katkoori, and R. Dubey. 2016. Point & Teleport Locomotion Technique for Virtual Reality. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY '16). Association for Computing Machinery, New York, NY, USA, 205–216. https://doi. org/10.1145/2967934.2968105Google ScholarGoogle Scholar
  15. E. Suma, S. Finkelstein, M. Reid, S. Babu, A. Ulinski, and L. F. Hodges. 2010. Evaluation of the cognitive effects of travel technique in complex real and virtual environments. IEEE Transactions on Visualization and Computer Graphics, 16:690–702. https://doi.org/10.1109/ TVCG.2009.93Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. Langbehn, P. Lubos, and F. Steinicke. 2018. Evaluation of Locomotion Techniques for Room-Scale VR: Joystick, Teleportation, and Redirected Walking. In Proceedings of the Virtual Reality International Conference - Laval Virtual (VRIC '18). Association for Computing Machinery, New York, NY, USA, Article 4, 1–9. https://doi. org/10.1145/3234253.3234291Google ScholarGoogle Scholar
  17. C. A. Zanbaka, B. C. Lok, S. V. Babu, A. C. Ulinski, and L. F. Hodges. 2005. Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment. IEEE Transactions on Visualization and Computer Graphics, 11:694–705. https://doi.org/10.1109/ TVCG.2005.92Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater, and F. P. Brooks. 1999. Walking >walking-in-place >flying, in virtual environments. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (SIGGRAPH '99). ACM Press/ Addison-Wesley Publishing Co., USA, 359–364. https://doi.org/10.1145/311535.311589Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. N. C. Nilsson, T. Peck, G. Bruder, E. Hodgson, S. Serafin, M. Whitton, F. Steinicke, and E. S. Rosenberg. 2018. 15 years of research on redirected walking in immersive virtual environments. IEEE Computer Graphics and Applications, 38:44–56. https://doi.org/10.1109/ MCG.2018.111125628Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Janson and A. Tigges. 2014. Fundamental Concepts of Architecture. Birkhäuser.Google ScholarGoogle Scholar
  21. G. Böhme, P. Zumthor, J. Pallasmaa. 2013. Building Atmosphere. OASE #91. Rotterdam: Nai010 Publishers.Google ScholarGoogle Scholar
  22. J. Pallasmaa. 2014. Space, Time, Atmosphere. Emotion and Peripheral Perception in Architectural Experience. Lebenswelt: Aesthetics and Philosophy of Experience. https://doi. org/10.13130/2240-9599/4202Google ScholarGoogle Scholar
  23. W. J. Michell. 1999. City of Bits: Space, Place, and the Infobahn. MIT Press, Cambridge, MA, USA.Google ScholarGoogle Scholar
  24. M. Benedikt (Ed.). 1991. Cyberspace: first steps. MIT Press, Cambridge, MA, USA.Google ScholarGoogle Scholar
  25. J. Pallasmaa. 2018. Architecture as Experience: The Fusion of the World and the Self. Architectural Research in Finland. 2, 1, pp. 9–17.Google ScholarGoogle Scholar
  26. J. Canto-Perello, M. Martinez-Garcia, and J. Curiel-Esparza, and M. Martin-Utrillas. 2015. Implementing Sustainability Criteria for Selecting a Roof Assembly Typology in Medium Span Buildings. Sustainability. 7. 6854-6871. https:// doi.org/10.3390/su7066854Google ScholarGoogle ScholarCross RefCross Ref
  27. Q. Sun, L. Wei, and A. Kaufman. 2016. Mapping virtual and physical reality. ACM Trans. Graph. 35, 4, Article 64 (July 2016), 12 pages. https:// doi.org/10.1145/2897824.2925883Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. X. Zhang, Z. Lian, and Y. Wu. 2017. Human Physiological Responses to Wooden Indoor Environment. Physiology & Behavior, v. 174, pp. 27 –34. https://doi.org/10.1016/j.physbeh.2017.02.043Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Banaei, J. Hatami, A. Yazdanfar, and K. Gramann. 2017. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. Frontiers in Human Neuroscience 11 (2017), 477. https://doi.org/10.3389/ fnhum.2017.00477Google ScholarGoogle ScholarCross RefCross Ref
  30. S. Soltani and N. Kırcı. 2019. Phenomenology and Space in Architecture: Experience, Sensation and Meaning. International Journal of Architectural Engineering Technology. 6. https://doi. org/10.15377/2409-9821.2019.06.1Google ScholarGoogle Scholar
  31. S. Razzaque, Z. Kohn, and M. C. Whitton. 2001. Redirected walking. pp.105–106.Google ScholarGoogle Scholar
  32. L. Fan, H. Li and M. Shi. Redirected Walking for Exploring Immersive Virtual Spaces with HMD: A Comprehensive Review and Recent Advances. In IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/ TVCG.2022.3179269Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Azmandian, T. Grechkin, M. Bolas, and E. Suma. 2015. Physical Space Requirements for Redirected Walking: How Size and Shape Affect Performance. In M. Imura, P. Figueroa, and B. Mohler, eds., ICAT-EGVE 2015 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments. The Eurographics Association. https://doi. org/10.2312/egve.20151315Google ScholarGoogle Scholar
  34. N. L. Williams, A. Bera, and D. Manocha. 2021. Arc: Alignment-based redirection controller for redirected walking in complex environments. IEEE Transactions on Visualization and Computer Graphics, 27(5):2535–2544, 2021. https:// doi.org/10.1109/TVCG.2021.3067781Google ScholarGoogle ScholarCross RefCross Ref
  35. E. A. Suma, Z. Lipps, S. Finkelstein, D. M. Krum, and M. Bolas. 2012. Impossible spaces: Maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Transactions on Visualization and Computer Graphics, 18:555–564, 2012. https://doi. org/10.1109/TVCG.2012.47Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. F. Samuel & P. Jones. 2012. The making of architectural promenade: Villa Savoye and Schminke House. Architectural Research Quarterly. 16. https://doi.org/10.1017/S1359135512000437Google ScholarGoogle ScholarCross RefCross Ref
  37. S. Marwecki and P. Baudisch. 2018. Scenograph: Fitting real-walking vr experiences into various tracking volumes. In User Interface Software and Technology, UIST ’18, p. 511–520. ACM, NY, USA. https://doi.org/10.1145/3242587.3242648Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. K. Vasylevska, H. Kaufmann, M. Bolas, and E. A. Suma. 2013. Flexible spaces: Dynamic layout generation for infinite walking in virtual environments. In 2013 IEEE Symposium on 3D User Interfaces, pp. 39–42, 2013. https://doi. org/10.1109/3DUI.2013.6550194Google ScholarGoogle ScholarCross RefCross Ref
  39. A. L. Simeone, N. C. Nilsson, A. Zenner, M. Speicher, and F. Daiber. 2020. The space bender: Supporting natural walking via overt manipulation of the virtual environment. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, pp. 598–606. https://doi.org/10.1109/ VR46266.2020.00082Google ScholarGoogle Scholar
  40. A. L. Simeone, R. Cools, S. Depuydt, J. Maria Gomes, P. Goris, J. Grocott, A. Esteves, and K. Gerling. 2022. Immersive Speculative Enactments: Bringing Future Scenarios and Technology to Life Using Virtual Reality. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI '22). Association for Computing Machinery, New York, NY, USA, Article 17, 1–20. https://doi. org/10.1145/3491102.3517492Google ScholarGoogle Scholar
  41. Epic Games. 2023. Geometry Script Users Guide. https://docs.unrealengine.com/5.0/en-US/geome-try-script-users-guide/Google ScholarGoogle Scholar

Index Terms

  1. Architectural Narrative VR: Towards Generatively Designing Natural Walkable Spaces
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          DIS '23: Proceedings of the 2023 ACM Designing Interactive Systems Conference
          July 2023
          2717 pages
          ISBN:9781450398930
          DOI:10.1145/3563657

          Copyright © 2023 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 10 July 2023

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate1,158of4,684submissions,25%

          Upcoming Conference

          DIS '24
          Designing Interactive Systems Conference
          July 1 - 5, 2024
          IT University of Copenhagen , Denmark

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader