skip to main content
10.1145/3564246.3585238acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Optimal Explicit Small-Depth Formulas for the Coin Problem

Published:02 June 2023Publication History

ABSTRACT

The δ-Coin Problem is the problem of distinguishing between a sequence of coin tosses that come up Heads with probability either 1+δ/2 or 1−δ/2. The computational complexity of this problem in various models has been studied in many previous works with various applications related to derandomization, hierarchy theorems, cryptography and meta-complexity.

In this paper, we construct improved small-depth explicit formulas for the coin problem. Specifically, we construct explicit formulas of optimal size exp(O(d(1/δ)d−1)) and information-theoretically optimal sample complexity O(1/δ2) (the sample complexity is the number of coin tosses supplied to the formulas) for this problem, as long as 1/δ ≥ dC· d for a large enough absolute constant C. Previous constructions of size-optimal AC0 formulas for the coin problem were either randomized (and hence non-explicit) or had a much worse sample complexity of (1/δ)Ω(d).

Our improved construction yields better Fixed-Depth Size Hierarchy theorems for uniform classes of small-depth circuits with AND, OR and ⊕ gates.

Our techniques deviate considerably from previous explicit constructions with non-trivial sample complexity due to Limaye, Sreenivasaiah, Venkitesh and the two authors (SICOMP 2021). While the approach there was to derandomize randomized formula constructions based on results of O’Donnell and Wimmer (ICALP 2007) and Amano (ICALP 2009), we instead look to derandomize a randomized circuit construction due to Rossman and Srinivasan (Theory of Computing 2019). This leads us to the problem of constructing certain pseudorandom graphs, which we do explicitly using ideas of Viola (Computational Complexity 2014) involving an iterative use of expander graphs. The constructions of these graphs, which are related to dispersers, may be independently interesting.

References

  1. Rohit Agrawal. 2020. Coin Theorems and the Fourier Expansion. Chic. J. Theor. Comput. Sci., 2020 (2020), http://cjtcs.cs.uchicago.edu/articles/2020/4/contents.html Google ScholarGoogle Scholar
  2. Miklós Ajtai. 1983. Σ _1^1-Formulae on finite structures. Ann. Pure Appl. Logic, 24, 1 (1983), 1–48. https://doi.org/10.1016/0168-0072(83)90038-6 Google ScholarGoogle ScholarCross RefCross Ref
  3. Miklós Ajtai and Michael Ben-Or. 1984. A Theorem on Probabilistic Constant Depth Computations. In STOC. ACM, 471–474. https://doi.org/10.1145/800057.808715 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. 1995. Derandomized graph products. Comput. Complexity, 5, 1 (1995), 60–75. issn:1016-3328 https://doi.org/10.1007/BF01277956 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. 1992. Simple Construction of Almost k-wise Independent Random Variables. Random Struct. Algorithms, 3, 3 (1992), 289–304. https://doi.org/10.1002/rsa.3240030308 Google ScholarGoogle ScholarCross RefCross Ref
  6. Kazuyuki Amano. 2009. Bounds on the Size of Small Depth Circuits for Approximating Majority. In ICALP (1) (Lecture Notes in Computer Science). Springer, 59–70. https://doi.org/10.1007/978-3-642-02927-1_7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern Approach. Cambridge University Press. isbn:978-0-521-42426-4 http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. 2020. Near-Optimal Erasure List-Decodable Codes. In 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), Shubhangi Saraf (Ed.) (LIPIcs, Vol. 169). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1:1–1:27. https://doi.org/10.4230/LIPIcs.CCC.2020.1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Eli Ben-Sasson, Madhu Sudan, Salil P. Vadhan, and Avi Wigderson. 2003. Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, Lawrence L. Larmore and Michel X. Goemans (Eds.). ACM, 612–621. https://doi.org/10.1145/780542.780631 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ravi B. Boppana. 1985. Amplification of Probabilistic Boolean Formulas. In 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985. IEEE Computer Society, 20–29. https://doi.org/10.1109/SFCS.1985.5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mark Braverman, Sumegha Garg, and David P. Woodruff. 2020. The Coin Problem with Applications to Data Streams. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, Sandy Irani (Ed.). IEEE, 318–329. https://doi.org/10.1109/FOCS46700.2020.00038 Google ScholarGoogle ScholarCross RefCross Ref
  12. Mark Braverman, Sumegha Garg, and Or Zamir. 2021. Tight Space Complexity of the Coin Problem. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE, 1068–1079. https://doi.org/10.1109/FOCS52979.2021.00106 Google ScholarGoogle ScholarCross RefCross Ref
  13. Joshua Brody and Elad Verbin. 2010. The Coin Problem and Pseudorandomness for Branching Programs. In FOCS. IEEE Computer Society, 30–39. https://doi.org/10.1109/FOCS.2010.10 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. 2019. Pseudorandom Generators from the Second Fourier Level and Applications to AC0 with Parity Gates. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA. 22:1–22:15. https://doi.org/10.4230/LIPIcs.ITCS.2019.22 Google ScholarGoogle ScholarCross RefCross Ref
  15. Gil Cohen, Ivan Bjerre Damgård, Yuval Ishai, Jonas Kölker, Peter Bro Miltersen, Ran Raz, and Ron D. Rothblum. 2013. Efficient Multiparty Protocols via Log-Depth Threshold Formulae - (Extended Abstract). In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, Ran Canetti and Juan A. Garay (Eds.) (Lecture Notes in Computer Science, Vol. 8043). Springer, 185–202. https://doi.org/10.1007/978-3-642-40084-1_11 Google ScholarGoogle ScholarCross RefCross Ref
  16. Gil Cohen, Anat Ganor, and Ran Raz. 2014. Two Sides of the Coin Problem. In APPROX-RANDOM (LIPIcs, Vol. 28). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 618–629. https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.618 Google ScholarGoogle ScholarCross RefCross Ref
  17. Moshe Dubiner and Uri Zwick. 1997. Amplification by Read-Once Formulas. SIAM J. Comput., 26, 1 (1997), 15–38. https://doi.org/10.1137/S009753979223633X Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, and Avishay Tal. 2019. AC^0[p] Lower Bounds Against MCSP via the Coin Problem. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi (Eds.) (LIPIcs, Vol. 132). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 66:1–66:15. https://doi.org/10.4230/LIPIcs.ICALP.2019.66 Google ScholarGoogle ScholarCross RefCross Ref
  19. Ronen Gradwohl, Guy Kindler, Omer Reingold, and Amnon Ta-Shma. 2005. On the Error Parameter of Dispersers. In Approximation, Randomization and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceedings, Chandra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan (Eds.) (Lecture Notes in Computer Science, Vol. 3624). Springer, 294–305. https://doi.org/10.1007/11538462_25 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Tzvika Hartman and Ran Raz. 2003. On the distribution of the number of roots of polynomials and explicit weak designs. Random Struct. Algorithms, 23, 3 (2003), 235–263. https://doi.org/10.1002/rsa.10095 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Johan Håstad, Alexander A. Razborov, and Andrew Chi-Chih Yao. 1995. On the Shrinkage Exponent for Read-Once Formulae. Theor. Comput. Sci., 141, 1&2 (1995), 269–282. https://doi.org/10.1016/0304-3975(94)00081-S Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Shlomo Hoory, Nathan Linial, and Avi Wigderson. 2006. Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.), 43, 4 (2006), 439–561. issn:0273-0979 https://doi.org/10.1090/S0273-0979-06-01126-8 Google ScholarGoogle ScholarCross RefCross Ref
  23. Shlomo Hoory, Avner Magen, and Toniann Pitassi. 2006. Monotone Circuits for the Majority Function. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2006 and 10th International Workshop on Randomization and Computation, RANDOM 2006, Barcelona, Spain, August 28-30 2006, Proceedings, Josep Díaz, Klaus Jansen, José D. P. Rolim, and Uri Zwick (Eds.) (Lecture Notes in Computer Science, Vol. 4110). Springer, 410–425. https://doi.org/10.1007/11830924_38 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Johan Håstad. 1989. Almost Optimal Lower Bounds for Small Depth Circuits. Advances in Computing Research, 5 (1989), 143–170. https://doi.org/10.1145/12130.12132 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Svante Janson. 1990. Poisson Approximation for Large Deviations. Random Struct. Algorithms, 1, 2 (1990), 221–230. https://doi.org/10.1002/rsa.3240010209 Google ScholarGoogle ScholarCross RefCross Ref
  26. Nabil Kahale. 1995. Eigenvalues and expansion of regular graphs. J. Assoc. Comput. Mach., 42, 5 (1995), 1091–1106. issn:0004-5411 https://doi.org/10.1145/210118.210136 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Chin Ho Lee and Emanuele Viola. 2018. The Coin Problem for Product Tests. TOCT, 10, 3 (2018), 14:1–14:10. https://doi.org/10.1145/3201787 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nutan Limaye, Karteek Sreenivasaiah, Srikanth Srinivasan, Utkarsh Tripathi, and S. Venkitesh. 2021. A Fixed-Depth Size-Hierarchy Theorem for AC^0[⊕ ] via the Coin Problem. SIAM J. Comput., 50, 4 (2021), 1461–1499. https://doi.org/10.1137/19M1276467 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Lubotzky, R. Phillips, and P. Sarnak. 1988. Ramanujan graphs. Combinatorica, 8, 3 (1988), 261–277. issn:0209-9683 https://doi.org/10.1007/BF02126799 Google ScholarGoogle ScholarCross RefCross Ref
  30. Raghu Meka, Omer Reingold, and Yuan Zhou. 2014. Deterministic Coupon Collection and Better Strong Dispersers. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain, Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and Cristopher Moore (Eds.) (LIPIcs, Vol. 28). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 872–884. https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.872 Google ScholarGoogle ScholarCross RefCross Ref
  31. Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil P. Vadhan. 2021. Derandomization beyond Connectivity: Undirected Laplacian Systems in Nearly Logarithmic Space. SIAM J. Comput., 50, 6 (2021), 1892–1922. https://doi.org/10.1137/20M134109X Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Joseph Naor and Moni Naor. 1993. Small-Bias Probability Spaces: Efficient Constructions and Applications. SIAM J. Comput., 22, 4 (1993), 838–856. https://doi.org/10.1137/0222053 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Noam Nisan and Avi Wigderson. 1994. Hardness vs Randomness. J. Comput. Syst. Sci., 49, 2 (1994), 149–167. https://doi.org/10.1016/S0022-0000(05)80043-1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ryan O’Donnell. 2014. Analysis of Boolean functions. Cambridge University Press, New York. isbn:978-1-107-03832-5 https://doi.org/10.1017/CBO9781139814782 Google ScholarGoogle ScholarCross RefCross Ref
  35. Ryan O’Donnell and Karl Wimmer. 2007. Approximation by DNF: Examples and Counterexamples. In ICALP (Lecture Notes in Computer Science, Vol. 4596). Springer, 195–206. https://doi.org/10.1007/978-3-540-73420-8_19 Google ScholarGoogle ScholarCross RefCross Ref
  36. Igor Carboni Oliveira, Rahul Santhanam, and Srikanth Srinivasan. 2019. Parity Helps to Compute Majority. In 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, Amir Shpilka (Ed.) (LIPIcs, Vol. 137). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1–23:17. https://doi.org/10.4230/LIPIcs.CCC.2019.23 Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Jaikumar Radhakrishnan and Amnon Ta-Shma. 2000. Bounds for Dispersers, Extractors, and Depth-Two Superconcentrators. SIAM J. Discret. Math., 13, 1 (2000), 2–24. https://doi.org/10.1137/S0895480197329508 Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ran Raz, Omer Reingold, and Salil P. Vadhan. 2002. Extracting all the Randomness and Reducing the Error in Trevisan’s Extractors. J. Comput. Syst. Sci., 65, 1 (2002), 97–128. https://doi.org/10.1006/jcss.2002.1824 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. A. Razborov. 1987. Lower bounds on the dimension of schemes of bounded depth in a complete basis containing the logical addition function. Mat. Zametki, 41, 4 (1987), 598–607, 623. issn:0025-567X Google ScholarGoogle Scholar
  40. Omer Reingold, Salil Vadhan, and Avi Wigderson. 2002. Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. of Math. (2), 155, 1 (2002), 157–187. issn:0003-486X https://doi.org/10.2307/3062153 Google ScholarGoogle ScholarCross RefCross Ref
  41. Benjamin Rossman. 2008. On the constant-depth complexity of k-clique. In STOC. ACM, 721–730. https://doi.org/10.1145/1374376.1374480 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Benjamin Rossman. 2018. The Average Sensitivity of Bounded-Depth Formulas. Comput. Complex., 27, 2 (2018), 209–223. https://doi.org/10.1007/s00037-017-0156-0 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Benjamin Rossman and Srikanth Srinivasan. 2019. Separation of AC^ 0[⊕ ] Formulas and Circuits. Theory Comput., 15 (2019), 1–20. https://doi.org/10.4086/toc.2019.v015a017 Google ScholarGoogle ScholarCross RefCross Ref
  44. Ronen Shaltiel and Emanuele Viola. 2010. Hardness Amplification Proofs Require Majority. SIAM J. Comput., 39, 7 (2010), 3122–3154. https://doi.org/10.1137/080735096 Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Victor Shoup. 1990. New algorithms for finding irreducible polynomials over finite fields. Math. Comp., 54, 189 (1990), 435–447. https://doi.org/10.2307/2008704 Google ScholarGoogle ScholarCross RefCross Ref
  46. Amir Shpilka and Avi Wigderson. 2006. Derandomizing Homomorphism Testing in General Groups. SIAM J. Comput., 36, 4 (2006), 1215–1230. https://doi.org/10.1137/S009753970444658X Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Michael Sipser. 1988. Expanders, Randomness, or Time versus Space. J. Comput. Syst. Sci., 36, 3 (1988), 379–383. https://doi.org/10.1016/0022-0000(88)90035-9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Roman Smolensky. 1987. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity. In STOC. ACM, 77–82. https://doi.org/10.1145/28395.28404 Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. John P. Steinberger. 2013. The Distinguishability of Product Distributions by Read-Once Branching Programs. In IEEE Conference on Computational Complexity. IEEE Computer Society, 248–254. https://doi.org/10.1109/CCC.2013.33 Google ScholarGoogle ScholarCross RefCross Ref
  50. Salil P. Vadhan. 2012. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7, 1-3 (2012), 1–336. https://doi.org/10.1561/0400000010 Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Leslie G. Valiant. 1984. Short Monotone Formulae for the Majority Function. J. Algorithms, 5, 3 (1984), 363–366. https://doi.org/10.1016/0196-6774(84)90016-6 Google ScholarGoogle ScholarCross RefCross Ref
  52. Emanuele Viola. 2014. Randomness Buys Depth for Approximate Counting. Computational Complexity, 23, 3 (2014), 479–508. https://doi.org/10.1007/s00037-013-0076-6 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Optimal Explicit Small-Depth Formulas for the Coin Problem

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          STOC 2023: Proceedings of the 55th Annual ACM Symposium on Theory of Computing
          June 2023
          1926 pages
          ISBN:9781450399135
          DOI:10.1145/3564246

          Copyright © 2023 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 June 2023

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,469of4,586submissions,32%

          Upcoming Conference

          STOC '24
          56th Annual ACM Symposium on Theory of Computing (STOC 2024)
          June 24 - 28, 2024
          Vancouver , BC , Canada
        • Article Metrics

          • Downloads (Last 12 months)116
          • Downloads (Last 6 weeks)6

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader