skip to main content
10.1145/3565291.3565309acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbdtConference Proceedingsconference-collections
research-article

Feature selection methods for high-dimensional biomedical time-to-event data: a review

Published:16 December 2022Publication History

ABSTRACT

In digital era, time-to-event data collected from biomedical studies and healthcare are often of high dimensionality, presenting computational challenges for traditional survival models. To make full use of these data, feature selection (FS), a data processing technique for dimensionality reduction, shows great significance. This work introduces statistical, machine learning, and deep learning FS methods for time-to-event data, mainly focusing on lasso, elastic net, adaptive lasso, adaptive elastic net, random survival forest, and XGBoost. We also describe three state-of-art FS methods – BASIL, FilterDeepHit+, and SparseDeepHit+. Then, we compare C-Index of 4 basic FS methods in experiment. Finally, we discuss future challenges and draw a conclusion.

References

  1. Kleinbaum, David G., and Mitchel Klein. "Survival analysis. Statistics for biology and health." Survival 510 (2005).Google ScholarGoogle Scholar
  2. Wang W, Liu W. Integration of gene interaction information into a reweighted Lasso-Cox model for accurate survival prediction[J]. Bioinformatics, 2020, 36(22-23). https://doi.org/10.1093/bioinformatics/btaa1046Google ScholarGoogle Scholar
  3. Qing Z, Xingjie S, Yang X, Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. [J]. Briefings in Bioinformatics(2):291. https://doi.org/10.1093/bib/bbu003Google ScholarGoogle Scholar
  4. Ren Z, Zhang L, Ding W, Development and validation of a novel survival model for head and neck squamous cell carcinoma based on autophagy-related genes[J]. Genomics, 2020, 113(1). https://doi.org/10.1016/j.ygeno.2020.11.017Google ScholarGoogle Scholar
  5. Kevin, He, Yue, An improved variable selection procedure for adaptive Lasso in high-dimensional survival analysis.[J]. Lifetime Data Analysis, 2018.https://doi.org/10.1007/s10985-018-9455-2Google ScholarGoogle Scholar
  6. Saha S, Ryu D, Ebrahimi N. Variable Selection with Random Survival Forest and Bayesian Additive Regression Tree for Survival Data[J]. 2019.https://doi.org/Google ScholarGoogle Scholar
  7. Walschaerts M, Leconte E, Besse P. Stable variable selection for right censored data: comparison of methods[J]. Tse Working Papers, 2012.https://doi.org/10.48550/arXiv.1203.4928Google ScholarGoogle Scholar
  8. Ni A, Cai J, Zeng D. Variable selection for case-cohort studies with failure time outcome[J]. Biometrika, 2016, 103(3):547-562.https://doi.org/10.1093/biomet/asw027Google ScholarGoogle ScholarCross RefCross Ref
  9. Wright R B E M. Adaptive Control Processes: a Guided Tour. By Richard Bellman. 1961. 42s. Pp. xvi + 255. (Princeton University Press)[J]. The Mathematical Gazette, 1962, 46(356): xvi-161.https://doi.org/10.2307/3611672Google ScholarGoogle Scholar
  10. Rietschel C, Yoon J, Mihaela V. Feature Selection for Survival Analysis with Competing Risks using Deep Learning[J]. 2018.https://doi.org/10.48550/arXiv.1811.09317Google ScholarGoogle Scholar
  11. Shahraki H R, Salehi A, Zare N. Survival Prognostic Factors of Male Breast Cancer in Southern Iran: a LASSO-Cox Regression Approach[J]. Asian Pac J Cancer Prev, 2015, 16(15):6773-6777.https://doi.org/10.7314/APJCP.2015.16.15.6773Google ScholarGoogle ScholarCross RefCross Ref
  12. Kim J, Sohn I, Jung S H, Analysis of Survival Data with Group Lasso[J]. Communications in Statistics - Simulation and Computation, 2012, 41(9).https://doi.org/10.1080/03610918.2011.611311Google ScholarGoogle Scholar
  13. Cunningham P, Kathirgamanathan B, Delany S J. Feature Selection Tutorial with Python Examples[J]. 2021.https://doi.org/10.48550/arXiv.2106.06437Google ScholarGoogle Scholar
  14. Shen Z, Wang H, Zhang Z, A fast adaptive Lasso for the cox regression via safe screening rules[J]. Journal of Statistical Computation and Simulation, 2021, 91(14):3005-3027.https://doi.org/10.1080/00949655.2021.1914043Google ScholarGoogle ScholarCross RefCross Ref
  15. Attallah O, Karthikesalingam A, Holt P J E, feature selection through validation and un-censoring of endovascular repair survival data for predicting the risk of re- intervention[J]. 2018.https://doi.org/10.1186/s12911-017-0508-3Google ScholarGoogle Scholar
  16. Li J, Cheng K, Wang S, Feature Selection: A Data Perspective[J]. Acm Computing Surveys, 2016, 50(6).https://doi.org/10.1145/3136625Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Remeseiro B , Bolon-Canedo V . A review of feature selection methods in medical applications[J]. Computers in Biology and Medicine, 2019:103375.Google ScholarGoogle Scholar
  18. Robert, Tibshirani. Regression Shrinkage and Selection via the Lasso[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1996.https://doi.org/10.2307/2346178Google ScholarGoogle Scholar
  19. JL Jiménez, Dorronsoro J R. Proximal Methods for Lasso Penalties in the Cox Proportional Hazards Model.Google ScholarGoogle Scholar
  20. Zou H, Hastie T. Addendum: "Regularization and variable selection via the elastic net'' [J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005), no. 2, 301–320; MR2137327].[J]. journal of the royal statistical society, 2010, 67(5):768-768.https://doi.org/10.1111/j.1467-9868.2005.00527.xGoogle ScholarGoogle Scholar
  21. Simon N, Friedman J H, Hastie T, Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent[J]. Journal of Statistical Software, 2011, 39(05):1-13.https://doi.org/10.18637/jss.v039.i05Google ScholarGoogle ScholarCross RefCross Ref
  22. Zou, Hui. The Adaptive Lasso and Its Oracle Properties[J]. Publications of the American Statistical Association, 2006, 101(476):1418-1429.https://doi.org/10.1198/016214506000000735Google ScholarGoogle ScholarCross RefCross Ref
  23. Zhang, Hao Helen, and Wenbin Lu. "Adaptive Lasso for Cox's proportional hazards model." Biometrika 94.3 (2007): 691-703.Google ScholarGoogle ScholarCross RefCross Ref
  24. Zou H, Zhang H H. On the adaptive elastic-net with a diverging number of parameters[J]. Annals of Statistics, 2009, 37(4):1733-1751.https://doi.org/10.1214/08-AOS625Google ScholarGoogle ScholarCross RefCross Ref
  25. Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival forests. The Annals of Applied Statistics, 2(3), 841–860.https://doi.org/10.1214/08-AOAS169Google ScholarGoogle Scholar
  26. Binder H. CoxBoost: Cox Models by Likelihood Based Boosting for a Single Survival Endpoint or Competing Risks, 2013. https://CRAN.R-project.org/package=CoxBoost (17 October 2019, date last accessed).Google ScholarGoogle Scholar
  27. Hothorn T, Bühlmann P, Kneib T, et al. mboost: Model-Based Boosting, 2018. https://CRAN.R-project.org/package=mboost (17 October 2019, date last accessed).Google ScholarGoogle Scholar
  28. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System[J]. ACM, 2016.https://doi.org/10.1145/2939672.2939785Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Belle V V. Support Vector Machine for Survival Analysis. 2007. 1-8. 2007Google ScholarGoogle Scholar
  30. Evers, Ludger, and Claudia-Martina Messow. "Sparse kernel methods for high-dimensional survival data." Bioinformatics 24.14 (2008): 1632-1638.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Van Belle, V., Pelckmans, K., Suykens, J.A., Van Huffel, S., “Survival SVM: a practical scalable algorithm”, In: Proc. of 16th European Symposium on Artificial Neural Networks, 89-94, 2008.Google ScholarGoogle Scholar
  32. Ching T, Zhu X, Garmire LX (2018) Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data. PLOS Computational Biology 14(4): e1006076. https://doi.org/10.1371/journal.pcbi.1006076Google ScholarGoogle Scholar
  33. Katzman, J.L., Shaham, U., Cloninger, A. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol 18, 24 (2018). https://doi.org/10.1186/s12874-018-0482-1Google ScholarGoogle ScholarCross RefCross Ref
  34. Lee, C., Zame, W., Yoon, J. and van der Schaar, M. 2018. DeepHit: A Deep Learning Approach to Survival Analysis With Competing Risks. Proceedings of the AAAI Conference on Artificial Intelligence. 32, 1 (Apr. 2018). DOI:https://doi.org/10.1609/aaai.v32i1.11842.Google ScholarGoogle Scholar
  35. W. A. Knaus, F. E. Harrell, J. Lynn, L. Goldman, R. S. Phillips, A. F. Connors, N. V. Dawson, W. J. Fulkerson, R. M. Califf, N. Desbiens, , “The support prognostic model: objective estimates of survival for seriously ill hospitalized adults,” Annals of internal medicine, vol. 122, no. 3, pp. 191–203, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  36. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.Google ScholarGoogle Scholar
  37. Hosmer DW, Lemeshow S, May S. Applied Survival Analysis: Regression Modeling of Time to Event Data. 2nd ed. New York: Wiley-Interscience; 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Schumacher M, Bastert G, Bojar H, Huebner K, Olschewski M, Sauerbrei W, Schmoor C, Beyerle C, Neumann R, Rauschecker H. Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. german breast cancer study group. J Clin Oncol. 1994;12(10):2086–93.Google ScholarGoogle Scholar
  39. A. Johnson, T. Pollard, and R. Mark, “Mimic-iii clinical database (version 1.4),” https://doi.org/10.13026/C2XW26, 2016.Google ScholarGoogle Scholar
  40. [A. Johnson, T. Pollard, O. Badawi , “eicu collaborative research database (version 2.0),” https://doi.org/10.13026/4mxk-na84, 2019.Google ScholarGoogle Scholar
  41. C. Lee, J. Yoon, M. van der Schaar, "Dynamic-DeepHit: A Deep Learning Approach for Dynamic Survival Analysis With Competing Risks Based on Longitudinal Data," IEEE Transactions on Biomedical Engineering (TBME). 2020Google ScholarGoogle ScholarCross RefCross Ref
  42. Chowdhury MZI, Turin TC. Variable selection strategies and its importance in clinical prediction modelling. Fam Med Com Health 2020;8:e000262. https://doi.org/10.1136/fmch-2019-000262Google ScholarGoogle Scholar
  43. Uno H, Cai T, Pencina M J, On the C‐statistics for evaluating overall adequacy of risk prediction procedures with censored survival data[J]. Statistics in medicine, 2011, 30(10): 1105-1117.https://doi.org/10.1002/sim.4154Google ScholarGoogle Scholar
  44. Pencina M J, D'Agostino R B. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation[J]. Statistics in medicine, 2004, 23(13): 2109-2123.https://doi.org/10.1002/sim.1802Google ScholarGoogle Scholar
  45. Cavanaugh J E, Neath A A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2019, 11(3): e1460.https://doi.org/10.1002/wics.1460Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Graf, Erika, "Assessment and comparison of prognostic classification schemes for survival data." Statistics in medicine 18.17‐18 (1999): 2529-2545.Google ScholarGoogle ScholarCross RefCross Ref
  47. Haider H, Hoehn B, Davis S, Effective Ways to Build and Evaluate Individual Survival Distributions[J]. 2020(85).Google ScholarGoogle Scholar
  48. Herrmann M, Probst P, Hornung R, Large-scale benchmark study of survival prediction methods using multi-omics data.[J]. Ludwig-Maximilians-Universität München, 2021(3). https://doi.org/10.1093/BIB/BBAA167Google ScholarGoogle Scholar
  49. Qian J, Tanigawa Y, Du W, A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank[J]. PLoS Genetics, 2020, 16(10):e1009141. https://doi.org/10.1371/journal.pgen.1009141Google ScholarGoogle ScholarCross RefCross Ref
  50. Qian J, Du W, Tanigawa Y, A Fast and Flexible Algorithm for Solving the Lasso in Large-scale and Ultrahigh-dimensional Problems. Cold Spring Harbor Laboratory, 2019.https://doi.org/10.1101/630079Google ScholarGoogle Scholar
  51. Li R, Chang C, Justesen J M, Fast Lasso method for Large-scale and Ultrahigh-dimensional Cox Model with applications to UK Biobank[J]. Oxford University Press (OUP), 2020.https://doi.org/10.1101/2020.01.20.913194Google ScholarGoogle ScholarCross RefCross Ref
  52. Bycroft C, Freeman C, Petkova D, The UK Biobank resource with deep phenotyping and genomic data[J]. Nature, 2018, 562(7726): 203-209. https://doi.org/10.1038/s41586-018-0579-zGoogle ScholarGoogle ScholarCross RefCross Ref
  53. FRIEDMAN, J., HASTIE, T.AND TIBSHIRANI, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33, 1–22.Google ScholarGoogle Scholar
  54. Breheny P, Huang J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[J]. Annals of Applied Stats, 2011, 5(1):232-253.https://doi.org/10.1214/10-AOAS388Google ScholarGoogle ScholarCross RefCross Ref
  55. Moncada-Torres A, Maaren M C V, Hendriks M P, Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival[J]. Scientific Reports.https://doi.org/10.1038/s41598-021-86327-7Google ScholarGoogle Scholar
  56. V. Arya, R.K.E. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S.C. Hoffman, S. Houde, Q.V. Liao, R. Luss, A. Mojsilovic, S. Mourad, P. Pedemonte, R. Raghavendra, J. Richards, P. Sattigeri, K. Shanmugam, M. Singh, K.R. Varshney, D. Wei, Y. Zhang, One explanation does not fit all: A toolkit and taxonomy of AI explainability techniques, 2019, arXiv:1909.03012.Google ScholarGoogle Scholar
  57. R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of methods for explaining black box models, ACM Comput. Surv. 51 (5) (2019) 93.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Feature selection methods for high-dimensional biomedical time-to-event data: a review

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ICBDT '22: Proceedings of the 5th International Conference on Big Data Technologies
        September 2022
        454 pages
        ISBN:9781450396875
        DOI:10.1145/3565291

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 16 December 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited
      • Article Metrics

        • Downloads (Last 12 months)37
        • Downloads (Last 6 weeks)3

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format