skip to main content
10.1145/3565478.3572322acmconferencesArticle/Chapter ViewAbstractPublication PagesnanoarchConference Proceedingsconference-collections
research-article

High-performance STT-MRAM Logic-in-Memory Scheme Utilizing Data Read Features

Published: 31 May 2023 Publication History

Abstract

In the Big Data era, enormous amounts of data processing have caused an intolerable 'memory wall' challenge for traditional Von Neumann architectures. Therefore, more advanced Logic-in-memory (LiM) computing architectures are proposed with integrated computing and memory units that reduce data migration. The emerging non-volatile memory STT-MRAM, with its fast access speed, near-zero leakage power consumption and high density is one of the most competitive carriers for LiM architectures. This work introduces the principle of LiM and proposes four basic logic operations (XNOR, XOR, AND and OR) based on STT-MRAM. Incorporating the reading characteristics of STT-MRAM and slight modifications to the peripheral circuitry, these operations achieve significant optimisation in terms of latency and energy consumption. From the experimental results, the proposed scheme can reduce the latency of XOR, AND and OR operations at least by 99.3%, 82.2% and 80.2% compared with the existing design. Also, 500 Monte Carlo samples prove the feasibility and robustness of the proposed scheme.

References

[1]
M. F. Ali, A. Jaiswal, and K. Roy. 2020. In-Memory Low-Cost Bit-Serial Addition Using Commodity DRAM Technology. IEEE Transactions on Circuits and Systems I: Regular Papers 67, 1 (2020), 155--165.
[2]
H. Amrouch, N. Du, A. Gebregiorgis, S. Hamdioui, and I. Polian. 2021. Towards Reliable In-Memory Computing:From Emerging Devices to Post-von-Neumann Architectures. In Proc. IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). Singapore, Singapore, 1--6.
[3]
Y. Bai, Y. Zhang, J. Wang, G. Wang, Z. Zhang, Z. Zheng, K. Zhang, and W. Zhao. 2020. A Novel In-Memory Computing Scheme Based on Toggle Spin Torque MRAM. In Proc. ACM Proceedings of the 2020 on Great Lakes Symposium on VLSI (Virtual Event, China) (GLSVLSI). New York, NY, USA, 351âĂŞ356.
[4]
H. Cai, B. Liu, J. Chen, L. Naviner, Y. Zhou, Z. Wang, and J. Yang. 2021. A Survey of In-Spin Transfer Torque MRAM Computing. Science China Information Sciences 64, 6 (2021), 1--15.
[5]
M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. 2005. A Novel Nonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-Ram. In Proc. IEEE International Electron Devices Meeting (IEDM). Washington, DC, USA, 459--462.
[6]
S. Jain, K. Ranjan, A.and Roy, and A. Raghunathan. 2018. Computing in Memory With Spin-Transfer Torque Magnetic RAM. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, 3 (2018), 470--483.
[7]
J. Kim, K. Ryu, Seung H. Kang, and S. Jung. 2012. A Novel Sensing Circuit for Deep Submicron Spin Transfer Torque MRAM (STT-MRAM). IEEE Transactions on Very Large Scale Integration Systems 20, 1 (2012), 181--186.
[8]
B. Q. Le, A. Levy, T. F. Wu, R. M. Radway, E. R. Hsieh, X. Zheng, M. Nelson, P. Raina, H.-S. Philip Wong, S. Wong, and S. Mitra. 2021. RADAR: A Fast and Energy-Efficient Programming Technique for Multiple Bits-Per-Cell RRAM Arrays. IEEE Transactions on Electron Devices 68, 9 (2021), 4397--4403.
[9]
Y. Ma, L. Zheng, and P. Zhou. 2019. CoDRAM: A Novel Near Memory Computing Framework with Computational DRAM. In Proc. IEEE International Conference on ASIC (ASICON). Chongqing, China, 1--4.
[10]
M. Natsui, D. Suzuki, N. Sakimura, R. Nebashi, Y. Tsuji, A. Morioka, T. Sugibayashi, S. Miura, H. Honjo, K. Kinoshita, S. Ikeda, T. Endoh, H. Ohno, and T. Hanyu. 2015. Nonvolatile Logic-in-Memory LSI Using Cycle-Based Power Gating and its Application to Motion-Vector Prediction. IEEE Journal of Solid-State Circuits 50, 2 (2015), 476--489.
[11]
M. Nouripayam, A. Prieto, V. K. Kishorelal, and J. Rodrigues. 2021. An Energy-Efficient Near-Memory Computing Architecture for CNN Inference at Cache Level. In Proc. IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Dubai, United Arab Emirates, 1--4.
[12]
J. Sun, S. Brown, W. Chen, E. Delenia, M. Gaidis, J. Harms, G. Hu, X. Jiang, R. Kilaru, W. Kula, et al. 2013. Spin-Torque Switching Efficiency in CoFeB-MgO based Tunnel Junctions. Physical Review B 88, 10 (2013), 104426.
[13]
R. Vattikonda, W. Wang, and Cao Y. 2006. Modeling and Minimization of PMOS NBTI Effect for Robust Nanometer Design. In Proc. ACM/IEEE Design Automation Conference (DAC). San Francisco, CA, USA.
[14]
J. Wang, Y. Bai, H. Wang, Z. Hao, G. Wang, K. Zhang, Y. Zhang, W. Lv, and Y. Zhang. 2022. Reconfigurable Bit-Serial Operation Using Toggle SOT-MRAM for High-Performance Computing in Memory Architecture. IEEE Transactions on Circuits and Systems I: Regular Papers (2022), 1--11.
[15]
J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and D. Sylvester. 2020. A 28-nm Compute SRAM With Bit-Serial Logic/Arithmetic Operations for Programmable In-Memory Vector Computing. IEEE Journal of Solid-State Circuits 55, 1 (2020), 76--86.
[16]
Z. Wang, H. Zhou, M. Wang, W. Cai, D. Zhu, J. Klein, and W. Zhao. 2019. Proposal of Toggle Spin Torques Magnetic RAM for Ultrafast Computing. IEEE Electron Device Letters 40, 5 (2019), 726--729.
[17]
B. Wu, Y. Cheng, J. Yang, A. Todri-Sanial, and W. Zhao. 2016. Temperature Impact Analysis and Access Reliability Enhancement for 1T1MTJ STT-RAM. IEEE Transactions on Reliability 65, 4 (2016), 1755--1768.
[18]
B. Wu, B. Zhang, Y. Cheng, Y. Wang, D. Liu, and W. Zhao. 2019. An Adaptive Thermal-Aware ECC Scheme for Reliable STT-MRAM LLC Design. IEEE Transactions on Very Large Scale Integration Systems 27, 8 (2019), 1851--1860.
[19]
S. Xie, C. Ni, A. Sayal, P. Jain, F. Hamzaoglu, and J. P. Kulkarni. 2021. eDRAM-CIM: Compute-In-Memory Design with Reconfigurable Embedded-Dynamic-Memory Array Realizing Adaptive Data Converters and Charge-Domain Computing. In Proc. IEEE International Solid- State Circuits Conference (ISSCC), Vol. 64. San Francisco, CA, USA, 248--250.
[20]
H. Zhang, B. Kang, W.and Wu, P. Ouyang, E. Deng, Y. Zhang, and W. Zhao. 2019. Spintronic Processing Unit Within Voltage-Gated Spin Hall Effect MRAMs. IEEE Transactions on Nanotechnology 18 (2019), 473--483.
[21]
H. Zhang, W. Kang, K. Cao, B. Wu, Y. Zhang, and W. Zhao. 2019. Spintronic Processing Unit in Spin Transfer Torque Magnetic Random Access Memory. IEEE Transactions on Electron Devices 66, 4 (2019), 2017--2022.
[22]
J. Zhang, Z. Wang, and N. Verma. 2017. In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array. IEEE Journal of Solid-State Circuits 52, 4 (2017), 915--924.
[23]
Y. Zhang, B. Yan, W. Kang, Y. Cheng, J. Klein, Y. Zhang, Y. and Chen, and W. Zhao. 2015. Compact Model of Subvolume MTJ and Its Design Application at Nanoscale Technology Nodes. IEEE Transactions on Electron Devices 62, 6 (2015), 2048--2055.
[24]
W. Zhao, C. Chappert, V. Javerliac, and J. Noziere. 2009. High Speed, High Stability and Low Power Sensing Amplifier for MTJ/CMOS Hybrid Logic Circuits. IEEE Transactions on Magnetics 45, 10 (2009), 3784--3787.

Index Terms

  1. High-performance STT-MRAM Logic-in-Memory Scheme Utilizing Data Read Features

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    NANOARCH '22: Proceedings of the 17th ACM International Symposium on Nanoscale Architectures
    December 2022
    140 pages
    ISBN:9781450399388
    DOI:10.1145/3565478
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 May 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. logic-in-memory
    2. STT-MRAM
    3. Boolean logics

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    NANOARCH '22
    Sponsor:

    Acceptance Rates

    NANOARCH '22 Paper Acceptance Rate 25 of 31 submissions, 81%;
    Overall Acceptance Rate 55 of 87 submissions, 63%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 108
      Total Downloads
    • Downloads (Last 12 months)49
    • Downloads (Last 6 weeks)13
    Reflects downloads up to 27 Feb 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media