skip to main content
research-article

Mirror Segmentation via Semantic-aware Contextual Contrasted Feature Learning

Published:17 February 2023Publication History
Skip Abstract Section

Abstract

Mirrors are everywhere in our daily lives. Existing computer vision systems do not consider mirrors, and hence may get confused by the reflected content inside a mirror, resulting in a severe performance degradation. However, separating the real content outside a mirror from the reflected content inside it is non-trivial. The key challenge is that mirrors typically reflect contents similar to their surroundings, making it very difficult to differentiate the two. In this article, we present a novel method to segment mirrors from a single RGB image. To the best of our knowledge, this is the first work to address the mirror segmentation problem with a computational approach. We make the following contributions: First, we propose a novel network, called MirrorNet+, for mirror segmentation, by modeling both contextual contrasts and semantic associations. Second, we construct the first large-scale mirror segmentation dataset, which consists of 4,018 pairs of images containing mirrors and their corresponding manually annotated mirror masks, covering a variety of daily-life scenes. Third, we conduct extensive experiments to evaluate the proposed method and show that it outperforms the related state-of-the-art detection and segmentation methods. Fourth, we further validate the effectiveness and generalization capability of the proposed semantic awareness contextual contrasted feature learning by applying MirrorNet+ to other vision tasks, i.e., salient object detection and shadow detection. Finally, we provide some applications of mirror segmentation and analyze possible future research directions. Project homepage: https://mhaiyang.github.io/TOMM2022-MirrorNet+/index.html.

REFERENCES

  1. [1] Badrinarayanan Vijay, Kendall Alex, and Cipolla Roberto. 2017. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 12 (2017), 24812495.Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Berman Maxim, Triki Amal Rannen, and Blaschko Matthew B.. 2018. The Lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In CVPR. 44134421.Google ScholarGoogle Scholar
  3. [3] Chang Angel, Dai Angela, Funkhouser Thomas, Halber Maciej, Niebner Matthias, Savva Manolis, Song Shuran, Zeng Andy, and Zhang Yinda. 2017. Matterport3D: Learning from RGB-D data in indoor environments. In 3DV. 667676.Google ScholarGoogle Scholar
  4. [4] Chen Liang-Chieh, Papandreou George, Kokkinos Iasonas, Murphy Kevin, and Yuille Alan L.. 2017. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 4 (2017), 834848.Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Chen Shuhan, Tan Xiuli, Wang Ben, and Hu Xuelong. 2018. Reverse attention for salient object detection. In ECCV. 234250.Google ScholarGoogle Scholar
  6. [6] Chen Yizhen and Hu Haifeng. 2021. Y-Net: Dual-branch joint network for semantic segmentation. ACM Trans. Multim. Comput. Commun. Applic. 17, 4 (2021), 122.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. [7] Chen Zuyao, Xu Qianqian, Cong Runmin, and Huang Qingming. 2020. Global context-aware progressive aggregation network for salient object detection. In AAAI, Vol. 34. 1059910606.Google ScholarGoogle Scholar
  8. [8] Cheng Ming-Ming, Mitra Niloy J., Huang Xiaolei, Torr Philip H. S., and Hu Shi-Min. 2014. Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 3 (2014), 569582.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. [9] Deng Zijun, Hu Xiaowei, Zhu Lei, Xu Xuemiao, Qin Jing, Han Guoqiang, and Heng Pheng-Ann. 2018. R3Net: Recurrent residual refinement network for saliency detection. In IJCAI. 684690.Google ScholarGoogle Scholar
  10. [10] Ding Henghui, Jiang Xudong, Shuai Bing, Liu Ai Qun, and Wang Gang. 2018. Context contrasted feature and gated multi-scale aggregation for scene segmentation. In CVPR. 23932402.Google ScholarGoogle Scholar
  11. [11] Fan Deng-Ping, Ji Ge-Peng, Zhou Tao, Chen Geng, Fu Huazhu, Shen Jianbing, and Shao Ling. 2020. PraNet: Parallel reverse attention network for polyp segmentation. In MICCAI. 263273.Google ScholarGoogle Scholar
  12. [12] Feng Mengyang, Lu Huchuan, and Ding Errui. 2019. Attentive feedback network for boundary-aware salient object detection. In CVPR. 16231632.Google ScholarGoogle Scholar
  13. [13] Gao Lianli, Song Jingkuan, Zhang Dongxiang, and Shen Heng Tao. 2018. Coarse-to-fine image co-segmentation with intra and inter rank constraints. In IJCAI. 719725.Google ScholarGoogle Scholar
  14. [14] Guo Shaohua, Liu Liang, Gan Zhenye, Wang Yabiao, Zhang Wuhao, Wang Chengjie, Jiang Guannan, Zhang Wei, Yi Ran, Ma Lizhuang, and Xu Ke. 2022. ISDNet: Integrating shallow and deep networks for efficient ultra-high resolution segmentation. In CVPR. 43614370.Google ScholarGoogle Scholar
  15. [15] He Junjun, Deng Zhongying, and Qiao Yu. 2019. Dynamic multi-scale filters for semantic segmentation. In ICCV. 35623572.Google ScholarGoogle Scholar
  16. [16] He Kaiming, Gkioxari Georgia, Dollár Piotr, and Girshick Ross. 2017. Mask R-CNN. In ICCV. 29612969.Google ScholarGoogle Scholar
  17. [17] Hou Q., Cheng M. M., Hu X., Borji A., Tu Z., and Torr P. H. S.. 2019. Deeply supervised salient object detection with short connections. IEEE Trans. Pattern Anal. Mach. Intell. 41, 4 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Hu Xiaowei, Zhu Lei, Fu Chi-Wing, Qin Jing, and Heng Pheng-Ann. 2018. Direction-aware spatial context features for shadow detection. In CVPR. 74547462.Google ScholarGoogle Scholar
  19. [19] Lin Jiaying, Tan Xin, Xu Ke, Ma Lizhuang, and Lau Rynson W. H.. 2022. Frequency-aware camouflaged object detection. ACM Trans. Multim. Comput. Commun. Applic. (2022).Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Krähenbühl Philipp and Koltun Vladlen. 2011. Efficient inference in fully connected CRFs with Gaussian edge potentials. NeurIPS 24 (2011).Google ScholarGoogle Scholar
  21. [21] Li Guanbin and Yu Yizhou. 2015. Visual saliency based on multiscale deep features. In CVPR. 54555463.Google ScholarGoogle Scholar
  22. [22] Li Xin, Yang Fan, Cheng Hong, Liu Wei, and Shen Dinggang. 2018. Contour knowledge transfer for salient object detection. In ECCV. 355370.Google ScholarGoogle Scholar
  23. [23] Li Yin, Hou Xiaodi, Koch Christof, Rehg James M., and Yuille Alan L.. 2014. The secrets of salient object segmentation. In CVPR. 280287.Google ScholarGoogle Scholar
  24. [24] Lin Feng, Li Bin, Zhou Wengang, Li Houqiang, and Lu Yan. 2020. Single-stage instance segmentation. ACM Trans. Multim. Comput. Commun. Applic. 16, 3 (2020), 119.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Lin Feng, Zhou Wengang, Deng Jiajun, Li Bin, Lu Yan, and Li Houqiang. 2021. Residual refinement network with attribute guidance for precise saliency detection. ACM Trans. Multim. Comput. Commun. Applic. 17, 3 (2021), 119.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Liu Nian, Han Junwei, and Yang Ming-Hsuan. 2018. PiCANet: Learning pixel-wise contextual attention for saliency detection. In CVPR. 30893098.Google ScholarGoogle Scholar
  27. [27] Long Jonathan, Shelhamer Evan, and Darrell Trevor. 2015. Fully convolutional networks for semantic segmentation. In CVPR. 34313440.Google ScholarGoogle Scholar
  28. [28] Man Xin, Ouyang Deqiang, Li Xiangpeng, Song Jingkuan, and Shao Jie. 2022. Scenario-aware recurrent transformer for goal-directed video captioning. ACM Trans. Multim. Comput. Commun. Applic. 18, 4 (2022), 117.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Mei Haiyang, Dong Bo, Dong Wen, Yang Jiaxi, Baek Seung-Hwan, Heide Felix, Peers Pieter, Wei Xiaopeng, and Yang Xin. 2022. Glass segmentation using intensity and spectral polarization cues. In CVPR. 1262212631.Google ScholarGoogle Scholar
  30. [30] Mei Haiyang, Ji Ge-Peng, Wei Ziqi, Yang Xin, Wei Xiaopeng, and Fan Deng-Ping. 2021. Camouflaged object segmentation with distraction mining. In CVPR. 87728781.Google ScholarGoogle Scholar
  31. [31] Mei Haiyang, Liu Yuanyuan, Wei Ziqi, Zhou Dongsheng, Wei Xiaopeng, Zhang Qiang, and Yang Xin. 2021. Exploring dense context for salient object detection. IEEE Trans. Circ. Syst. Vid. Technol. 32, 3 (2021), 13781389.Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Mei Haiyang, Yang Xin, Wang Yang, Liu Yuanyuan, He Shengfeng, Zhang Qiang, Wei Xiaopeng, and Lau Rynson W. H.. 2020. Don’t hit me! Glass detection in real-world scenes. In CVPR. 36873696.Google ScholarGoogle Scholar
  33. [33] Mei Haiyang, Yang Xin, Yu Letian, Zhang Qiang, Wei Xiaopeng, and Lau Rynson W. H.. 2022. Large-field contextual feature learning for glass detection. IEEE Trans. Pattern Anal. Mach. Intell. (2022).Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Messina Nicola, Amato Giuseppe, Esuli Andrea, Falchi Fabrizio, Gennaro Claudio, and Marchand-Maillet Stéphane. 2021. Fine-grained visual textual alignment for cross-modal retrieval using transformer encoders. ACM Trans. Multim. Comput. Commun. Applic. 17, 4 (2021), 123.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Olson Edwin. 2011. AprilTag: A robust and flexible visual fiducial system. In ICRA. 34003407.Google ScholarGoogle Scholar
  36. [36] Pang Youwei, Zhao Xiaoqi, Xiang Tian-Zhu, Zhang Lihe, and Lu Huchuan. 2022. Zoom in and out: A mixed-scale triplet network for camouflaged object detection. In CVPR. 21602170.Google ScholarGoogle Scholar
  37. [37] Pang Youwei, Zhao Xiaoqi, Zhang Lihe, and Lu Huchuan. 2020. Multi-scale interactive network for salient object detection. In CVPR. 94139422.Google ScholarGoogle Scholar
  38. [38] Punn Narinder Singh and Agarwal Sonali. 2020. Inception u-net architecture for semantic segmentation to identify nuclei in microscopy cell images. ACM Trans. Multim. Comput. Commun. Applic. 16, 1 (2020), 115.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Qin Xuebin, Zhang Zichen, Huang Chenyang, Gao Chao, Dehghan Masood, and Jagersand Martin. 2019. BASNet: Boundary-aware salient object detection. In CVPR. 74797489.Google ScholarGoogle Scholar
  40. [40] Qu Liangqiong, Tian Jiandong, He Shengfeng, Tang Yandong, and Lau Rynson W. H.. 2017. DeshadowNet: A multi-context embedding deep network for shadow removal. In CVPR. 40674075.Google ScholarGoogle Scholar
  41. [41] Silberman Nathan, Hoiem Derek, Kohli Pushmeet, and Fergus Rob. 2012. Indoor segmentation and support inference from RGBD images. In ECCV. 746760.Google ScholarGoogle Scholar
  42. [42] Song Yue, Tang Hao, Sebe Nicu, and Wang Wei. 2022. Disentangle saliency detection into cascaded detail modeling and body filling. ACM Trans. Multim. Comput. Commun. Applic. (2022).Google ScholarGoogle Scholar
  43. [43] Su Jinming, Li Jia, Zhang Yu, Xia Changqun, and Tian Yonghong. 2019. Selectivity or invariance: Boundary-aware salient object detection. In CVPR. 37993808.Google ScholarGoogle Scholar
  44. [44] Tan Xin, Lin Jiaying, Xu Ke, Chen Pan, Ma Lizhuang, and Lau Rynson W. H.. 2022. Mirror detection with the visual chirality cue. IEEE Trans. Pattern Anal. Mach. Intell. (2022), 113.Google ScholarGoogle Scholar
  45. [45] Tan Xin, Xu Ke, Cao Ying, Zhang Yiheng, Ma Lizhuang, and Lau Rynson W. H.. 2021. Night-time scene parsing with a large real dataset. IEEE Trans. Image Process. 30 (2021), 90859098.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. [46] Tian Xin, Xu Ke, Yang Xin, Du Lin, Yin Baocai, and Lau Rynson W. H.. 2022. Bi-directional object-context prioritization learning for saliency ranking. In CVPR. 58825891.Google ScholarGoogle Scholar
  47. [47] Tian Xin, Xu Ke, Yang Xin, Yin Baocai, and Lau Rynson. 2022. Learning to detect instance-level salient objects using complementary image labels. International Journal of Computer Vision. 130, 3 (2022), 729–746.Google ScholarGoogle Scholar
  48. [48] Vaswani Ashish, Shazeer Noam, Parmar Niki, Uszkoreit Jakob, Jones Llion, Gomez Aidan N., Kaiser Łukasz, and Polosukhin Illia. 2017. Attention is all you need. NeurIPS 30 (2017).Google ScholarGoogle Scholar
  49. [49] Vicente Tomás F. Yago, Hou Le, Yu Chen-Ping, Hoai Minh, and Samaras Dimitris. 2016. Large-scale training of shadow detectors with noisily-annotated shadow examples. In ECCV. 816832.Google ScholarGoogle Scholar
  50. [50] Wang Lijun, Lu Huchuan, Wang Yifan, Feng Mengyang, Wang Dong, Yin Baocai, and Ruan Xiang. 2017. Learning to detect salient objects with image-level supervision. In CVPR. 136145.Google ScholarGoogle Scholar
  51. [51] Wang Tiantian, Zhang Lihe, Wang Shuo, Lu Huchuan, Yang Gang, Ruan Xiang, and Borji Ali. 2018. Detect globally, refine locally: A novel approach to saliency detection. In CVPR. 31273135.Google ScholarGoogle Scholar
  52. [52] Wang Wenguan, Zhao Shuyang, Shen Jianbing, Hoi Steven C. H., and Borji Ali. 2019. Salient object detection with pyramid attention and salient edges. In CVPR. 14481457.Google ScholarGoogle Scholar
  53. [53] Wang Xiaolong, Girshick Ross, Gupta Abhinav, and He Kaiming. 2018. Non-local neural networks. In CVPR. 77947803.Google ScholarGoogle Scholar
  54. [54] Wei Jun, Wang Shuhui, and Huang Qingming. 2020. F\(^3\)Net: Fusion, feedback and focus for salient object detection. In AAAI, Vol. 34. 1232112328.Google ScholarGoogle Scholar
  55. [55] Whelan Thomas, Goesele Michael, Lovegrove Steven J., Straub Julian, Green Simon, Szeliski Richard, Butterfield Steven, Verma Shobhit, Newcombe Richard A., Goesele M., et al. 2018. Reconstructing scenes with mirror and glass surfaces.ACM Trans. Graph. 37, 4 (2018), 102–1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. [56] Woo Sanghyun, Park Jongchan, Lee Joon-Young, and Kweon In So. 2018. CBAM: Convolutional block attention module. In ECCV. 319.Google ScholarGoogle Scholar
  57. [57] Wu Zhe, Su Li, and Huang Qingming. 2019. Cascaded partial decoder for fast and accurate salient object detection. In CVPR. 39073916.Google ScholarGoogle Scholar
  58. [58] Xu Ke, Tian Xin, Yang Xin, Yin Baocai, and Lau Rynson W. H.. 2021. Intensity-aware single-image deraining with semantic and color regularization. IEEE Trans. Image Process. 30 (2021), 84978509.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Xu Ke, Yang Xin, Yin Baocai, and Lau Rynson W. H.. 2020. Learning to restore low-light images via decomposition-and-enhancement. In CVPR.Google ScholarGoogle Scholar
  60. [60] Xu Xin, Wang Shiqin, Wang Zheng, Zhang Xiaolong, and Hu Ruimin. 2021. Exploring image enhancement for salient object detection in low light images. ACM Trans. Multim. Comput. Commun. Applic. 17, 1s (2021), 119.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. [61] Yan Qiong, Xu Li, Shi Jianping, and Jia Jiaya. 2013. Hierarchical saliency detection. In CVPR. 11551162.Google ScholarGoogle Scholar
  62. [62] Yang Chuan, Zhang Lihe, Lu Huchuan, Ruan Xiang, and Yang Ming-Hsuan. 2013. Saliency detection via graph-based manifold ranking. In CVPR. 31663173.Google ScholarGoogle Scholar
  63. [63] Yang Xin, Mei Haiyang, Xu Ke, Wei Xiaopeng, Yin Baocai, and Lau Rynson W. H.. 2019. Where is my mirror? In ICCV. 88098818.Google ScholarGoogle Scholar
  64. [64] Yang Xin, Mei Haiyang, Zhang Jiqing, Xu Ke, Yin Baocai, Zhang Qiang, and Wei Xiaopeng. 2019. DRFN: Deep recurrent fusion network for single-image super-resolution with large factors. IEEE Trans. Multim. 21, 2 (2019), 328337.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. [65] Yang Zhenzhen, Xu Pengfei, Yang Yongpeng, and Bao Bing-Kun. 2021. A densely connected network based on U-Net for medical image segmentation. ACM Trans. Multim. Comput. Commun. Applic. 17, 3 (2021), 114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. [66] Yu Letian, Mei Haiyang, Dong Wen, Wei Ziqi, Zhu Li, Wang Yuxin, and Yang Xin. 2022. Progressive glass segmentation. IEEE Trans. Image Process. 31 (2022), 29202933.Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] Zhang Jiqing, Long Chengjiang, Wang Yuxin, Piao Haiyin, Mei Haiyang, Yang Xin, and Yin Baocai. 2021. A two-stage attentive network for single image super-resolution. IEEE Trans. Circ. Syst. Vid. Technol. 32, 3 (2021), 10201033.Google ScholarGoogle ScholarCross RefCross Ref
  68. [68] Zhang Jiqing, Long Chengjiang, Wang Yuxin, Yang Xin, Mei Haiyang, and Yin Baocai. 2020. Multi-context and enhanced reconstruction network for single image super resolution. In ICME. 16.Google ScholarGoogle Scholar
  69. [69] Zhang Ji, Song Jingkuan, Gao Lianli, Liu Ye, and Shen Heng Tao. 2022. Progressive meta-learning with curriculum. IEEE Trans. Circ. Syst. Vid. Technol. 32, 9 (2022), 5916–5930.Google ScholarGoogle Scholar
  70. [70] Zhang Lu, Dai Ju, Lu Huchuan, He You, and Wang Gang. 2018. A bi-directional message passing model for salient object detection. In CVPR. 17411750.Google ScholarGoogle Scholar
  71. [71] Zhang Xiaoning, Wang Tiantian, Qi Jinqing, Lu Huchuan, and Wang Gang. 2018. Progressive attention guided recurrent network for salient object detection. In CVPR. 714722.Google ScholarGoogle Scholar
  72. [72] Zhao Hengshuang, Qi Xiaojuan, Shen Xiaoyong, Shi Jianping, and Jia Jiaya. 2018. ICNet for real-time semantic segmentation on high-resolution images. In ECCV. 405420.Google ScholarGoogle Scholar
  73. [73] Zhao Hengshuang, Shi Jianping, Qi Xiaojuan, Wang Xiaogang, and Jia Jiaya. 2017. Pyramid scene parsing network. In CVPR. 28812890.Google ScholarGoogle Scholar
  74. [74] Zhao Ting and Wu Xiangqian. 2019. Pyramid feature attention network for saliency detection. In CVPR. 30853094.Google ScholarGoogle Scholar
  75. [75] Zhou Bolei, Zhao Hang, Puig Xavier, Fidler Sanja, Barriuso Adela, and Torralba Antonio. 2017. Scene parsing through ade20k dataset. In CVPR. 633641.Google ScholarGoogle Scholar
  76. [76] Zhou Huajun, Xie Xiaohua, Lai Jian-Huang, Chen Zixuan, and Yang Lingxiao. 2020. Interactive two-stream decoder for accurate and fast saliency detection. In CVPR. 91419150.Google ScholarGoogle Scholar
  77. [77] Zhu Lei, Deng Zijun, Hu Xiaowei, Fu Chi-Wing, Xu Xuemiao, Qin Jing, and Heng Pheng-Ann. 2018. Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In ECCV. 121136.Google ScholarGoogle Scholar
  78. [78] Zhu Lei, Xu Ke, Ke Zhanghan, and Lau Rynson W. H.. 2021. Mitigating intensity bias in shadow detection via feature decomposition and reweighting. In ICCV. 47024711.Google ScholarGoogle Scholar

Index Terms

  1. Mirror Segmentation via Semantic-aware Contextual Contrasted Feature Learning

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Multimedia Computing, Communications, and Applications
      ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 19, Issue 2s
      April 2023
      545 pages
      ISSN:1551-6857
      EISSN:1551-6865
      DOI:10.1145/3572861
      • Editor:
      • Abdulmotaleb El Saddik
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 February 2023
      • Online AM: 5 November 2022
      • Accepted: 25 September 2022
      • Revised: 27 August 2022
      • Received: 22 July 2022
      Published in tomm Volume 19, Issue 2s

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text

    HTML Format

    View this article in HTML Format .

    View HTML Format