skip to main content
research-article

Toward a Competence Model for Graphical Modeling

Published: 29 December 2022 Publication History

Abstract

Modeling is an integral part of many computing-related disciplines and thus also represents a curricular core component in computing education in tertiary education. Competence models in which modeling is integrated at least to some extent already exist in some of these disciplines. However, for the core component of graphical modeling, a competence model that illuminates the relevant competences in detail is still lacking. Therefore, we develop a competence model for graphical modeling with the aim to make teaching and especially assessments in the field more competence-oriented. This article reports on the first two studies conducted to develop and validate the competence model for graphical modeling. In the first study, the structure of the competence model was developed based on theories and approaches of educational science. Competences relevant for graphical modeling were deductively derived from literature and existing university course descriptions using techniques of qualitative content analysis. The result of the first study is a preliminary competence model. In the second study, the preliminary competence model was reviewed by means of an expert rating in the modeling community. The competence model was revised and refined based on these findings and subsequent expert discussions. The main result of the investigation represents the competence model for graphical modeling, which includes a total of 74 competence facets at different cognitive process levels in the five content areas of “model understanding and interpreting,” “model building and modifying,” “values, attitudes, and beliefs,” “metacognitive knowledge and skills,” and “social-communicative skills.”

Supplementary Material

3567598-supp (3567598-supp.zip)
Supplementary material

References

[1]
ACM/IEEE-CS. 2013. Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science. ACM, New York.
[2]
ACM/IEEE-CS. 2021. Computing Curricula 2020: Paradigms for Global Computing Education. ACM, New York.
[3]
Harith Aljumaily, Dolores Cuadra, and Debra F. Laefer. 2019. An empirical study to evaluate students’ conceptual modeling skills using UML. Comput. Sci. Edu. 29, 4 (2019), 407–427.
[4]
American Educational Research Association, American Psychological Association, and National Council on Measurement in Education. 2014. Standards for educational and psychological testing. American Educational Research Association, Washington, DC.
[5]
Lorin W. Anderson and David R. Krathwohl. 2001. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Longman, New York.
[6]
Wasana Bandara, Michael Rosemann, Islay Davies, and Cherri Tan. 2007. A structured approach to determining appropriate content for emerging information systems subjects: An example for BPM curricula design. In Proceedings of the 18th Australasian Conference on Information Systems. Toowoomba, Australia, 1132–1141.
[7]
Jörg Becker, Michael Rosemann, and Reinhard Schütte. 1995. Grundsätze ordnungsmäßiger Modellierung. Wirtschaftsinformatik 37, 5 (1995), 435–445.
[8]
Jörg Becker, Michael Rosemann, and Christoph von Uthmann. 2000. Guidelines of business process modeling. In Business Process Management, Wil van der Aalst, Jörg Desel, and Andreas Oberweis (Eds.). Springer, Berlin, 30–49.
[9]
Elena Bender, Peter Hubwieser, Niclas Schaper, Melanie Margaritis, Marc Berges, Laura Ohrndorf, Johannes Magenheim, and Sigrid Schubert. 2015. Towards a competency model for teaching computer science. Peabody J. Edu. 90, 4 (2015), 519–532.
[10]
Daria Bogdanova and Monique Snoeck. 2019. CaMeLOT: An educational framework for conceptual data modeling. Info. Softw. Technol. 110 (2019), 92–107.
[11]
Dominik Bork. 2019. A framework for teaching conceptual modeling and metamodeling based on Bloom’s revised taxonomy of educational objectives. In Proceedings of the 52nd Hawaii International Conference on System Sciences. 7701–7710.
[12]
Lars Borner, Barbara Paech, and Jürgen Rückert. 2006. Vom Modellverstehen zum Modellerstellen. In Modellierung in Lehre und Weiterbildung, Jörg Desel and Martin Glinz (Eds.). Innsbruck, 7–15.
[13]
José A. Cruz-Lemus, Marcela Genero, M. Esperanza Manso, Sandro Morasca, and Mario Piattini. 2009. Assessing the understandability of UML statechart diagrams with composite states: A family of empirical studies. Empir. Softw. Eng. 14, 6 (2009), 685–719.
[14]
Marian Daun, Jennifer Brings, Patricia Aluko Obe, Klaus Pohl, Steffen Moser, Hermann Schumacher, and Marcel Rieß. 2017. Teaching conceptual modeling in online courses: Coping with the need for individual feedback to modeling exercises. In Proceedings of the IEEE 30th Conference on Software Engineering Education and Training (CSEE&T’17). 134–143.
[15]
Nicola Döring and Jürgen Bortz. 2016. Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften. (5 ed.). Springer, Berlin.
[16]
Peter Fettke. 2009. How conceptual modeling is used. Commun. Assoc. Info. Syst. 25 (2009), 571–592.
[17]
Paul J. M. Frederiks and Theo P. van der Weide. 2006. Information modeling: The process and the required competencies of its participants. Data Knowl. Eng. 58, 1 (2006), 4–20.
[18]
Stephen Frezza, Mats Daniels, Arnold Pears, Åsa Cajander, Viggo Kann, Amanpreet Kapoor, Roger McDermott, Anne-Kathrin Peters, Mihaela Sabin, and Charles Wallace. 2018. Modelling competencies for computing education beyond 2020: A research based approach to defining competencies in the computing disciplines. In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Guido Rößling and Bruce Scharlau (Eds.). ACM, New York, 148–174.
[19]
Ursula Fuller and Bob Keim. 2007. Should we assess our students’ attitudes? In Proceedings of the 7th Baltic Sea Conference on Computing Education Research-Volume 88. 187–190.
[20]
Gesellschaft für Informatik e.V.2016. Empfehlungen für Bachelor- und Masterprogramme im Studienfach Informatik an Hochschulen. GI, Bonn.
[21]
Martin Glinz. 2008. Modellierung in der Lehre an Hochschulen: Thesen und Erfahrungen. Informatik-Spektrum 31, 5 (2008), 425–434.
[22]
Constantin Houy, Peter Fettke, and Peter Loos. 2012. Understanding understandability of conceptual models: what are we actually talking about? In Proceedings of the International Conference on Conceptual Modeling. 64–77.
[23]
Martin Hrabal, David Tucek, Vieroslav Molnár, and Gabriel Fedorko. 2020. Human factor in business process management: Modeling competencies of BPM roles. Bus. Process Manage. J. 27, 1 (2020), 275–305.
[24]
IEEE-CS. 2014. Software Engineering Competency Model Version 1.0 SWECOM: A Project of the IEEE Computer Society. IEEE.
[25]
Lars Jenßen, Simone Dunekacke, and Sigrid Blömeke. 2015. Qualitätssicherung in der Kompetenzforschung: Empfehlungen für den Nachweis von Validität in Testentwicklung und Veröffentlichungspraxis. In Kompetenzen Von Studierenden, Sigrid Blömeke and Olga Zlatkin-Troitschanskaia (Eds.). Beltz Juventa, Weinheim, Germany, 11–31.
[26]
Reinhard Jung and Christiane Lehrer. 2017. Guidelines for education in business and information systems engineering at tertiary institutions. Bus. Info. Syst. Eng. 59, 3 (2017), 189–203.
[27]
Eckhard Klieme, Hermann Avenarius, Werner Blum, Peter Döbrich, Hans Gruber, Manfred Prenzel, Kristina Reiss, Kurt Riquarts, Jürgen Rost, Heinz-Elmar Tenorth, and Helmut J. Vollmer. 2003. Zur Entwicklung Nationaler Bildungsstandards: Eine Expertise. BMBF, Bonn.
[28]
Eckhard Klieme and Johannes Hartig. 2007. Kompetenzkonzepte in den Sozialwissenschaften und im empirischen Diskurs [Concepts of competencies in the social sciences and in the empirical discourse]. Kompetenzdiagnostik. Zeitschrift für Erziehungswissenschaft, Sonderheft 8 (2007), 11–29.
[29]
J. Richard Landis and Gary G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics 33, 1 (1977), 159–174.
[30]
Timo Leuders. 2014. Modellierung mathematischer Kompetenz: Kriterien für eine Validitätsprüfung aus fachdidaktischer Sicht. J. Math. Didakt 35 (2014), 7–48.
[31]
Barbara Linck, Laura Ohrndorf, Sigrid Schubert, Peer Stechert, Johannes Magenheim, Wolfgang Nelles, Jonas Neugebauer, and Niclas Schaper. 2013. Competence model for informatics modelling and system comprehension. In Proceedings of the IEEE Global Engineering Education Conference (EDUCON’13). 85–93.
[32]
Odd Ivar Lindland, Guttorm Sindre, and Arne Solvberg. 1994. Understanding quality in conceptual modeling. IEEE Softw. 11, 2 (1994), 42–49.
[33]
Susana Masapanta-Carrión and J. Ángel Velázquez-Iturbide. 2018. A systematic review of the use of Bloom’s taxonomy in computer science education. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education. 441–446.
[34]
Philipp Mayring. 2019. Qualitative Inhaltsanalyse. In Handbuch Qualitative Forschung in Der Psychologie, Günter Mey and Katja Mruck (Eds.). Springer Fachmedien, Wiesbaden, 1–17.
[35]
Samuel Messick. 1995. Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. Amer. Psychol. 50, 9 (1995), 741–749.
[36]
Daniel L. Moody, Guttorm Sindre, Terje Brasethvik, and Arne Solvberg. 2003. Evaluating the quality of information models: Empirical testing of a conceptual model quality framework. In Proceedings of the 25th International Conference on Software Engineering. IEEE, 295–305.
[37]
Martin Mulder (Ed.). 2017. Competence-based Vocational and Professional Education: Bridging the Worlds of Work and Education. Springer International Publishing, Cham.
[38]
Jan Recker, Marta Indulska, Michael Rosemann, and Peter Green. 2006. Business processs modeling: A comparative analysis. J. Assoc. Info. Syst. 10, 4 (2006), 333–363.
[39]
Jan Recker and Michael Rosemann. 2009. Teaching business process modelling: Experiences and recommendations. Commun. Assoc. Info. Syst. 25 (2009), 379–394.
[40]
Jana-Rebecca Rehse, Michael Striewe, and Meike Ullrich. 2020. 2. Workshop zur Modellierung in der Hochschullehre. In Proceedings of the Modellierung Workshop and Tools & Demo Co-located with Modellierung(CEUR Workshop Proceedings, Vol. 2542). CEUR-WS.org, 56–57. Retrieved from http://ceur-ws.org/Vol-2542/MOHOL-preface.pdf.
[41]
Michael Rosemann. 2006. Potential pitfalls of process modeling: Part A. Bus. Process Manage. J. 12, 2 (2006), 249–254.
[42]
Michael Rosemann. 2006. Potential pitfalls of process modeling: Part B. Bus. Process Manage. J. 12, 3 (2006), 377–384.
[43]
Kristina Rosenthal, Benjamin Ternes, and Stefan Strecker. 2019. Learning conceptual modeling: Structuring overview, research themes and paths for the future research. In Proceedings of the European Conference on Information Systems (ECIS’19), Jan vom Brocke, Shirley Gregor, and Oliver Müller (Eds.).
[44]
Niclas Schaper. 2009. Aufgabenfelder und Perspektiven bei der Kompetenzmodellierung und -messung in der Lehrerbildung. Lehrerbildung auf Dem Prüfstand 2, 1 (2009), 166–199.
[45]
Niclas Schaper. 2021. Prüfen in der Hochschullehre. In Handbuch Hochschuldidaktik, Robert Kordts-Freudinger, Niclas Schaper, Antonia Scholkmann, and Birgit Szczyrba (Eds.). wbv, Bielefeld, 87–101.
[46]
Niclas Schaper, Frederic Hilkenmeier, and Elena Bender. 2013. Umsetzungshilfen Für kompetenzorientiertes Prüfen: HRK-Zusatzgutachten. Hochschulrektorenkonferenz, Bonn.
[47]
Franz Schott and Shahram Azizi Ghanbari. 2008. Kompetenzdiagnostik, Kompetenzmodelle, Kompetenzorientierter Unterricht: Zur Theorie und Praxis überprüfbarer Bildungsstandards. Waxmann, Münster, Germany.
[48]
Yvonne Sedelmaier and Dieter Landes. 2014. Software engineering body of skills (SWEBOS). In Proceedings of the IEEE Global Engineering Education Conference (EDUCON’14). 395–401.
[49]
Thembela Sonteya and Lisa F. Seymour. 2012. Towards an understanding of the business process analyst: An analysis of competencies. J. Info. Technol. Edu. 11 (2012), 43–63.
[50]
Herbert Stachowiak. 1973. Allgemeine Modelltheorie. Springer, Wien.
[51]
Michael Striewe, Constantin Houy, Jana-Rebecca Rehse, Meike Ullrich, Peter Fettke, Niclas Schaper, and Andreas Oberweis. 2020. Towards an automated assessment of graphical (business process) modeling competences: A research agenda. In Proceedings of the 50th Informatik Conference. Gesellschaft für Informatik (GI), Bonn, 665–670.
[52]
Benjamin Ternes, Stefan Strecker, Kristina Rosenthal, and Hagen Barth. 2019. A browser-based modeling tool for studying the learning of conceptual modeling based on a multi-modal data collection approach. In Human Practice. Digital Ecologies. Our Future. 14. Internationale Tagung Wirtschaftsinformatik (WI 2019): Tagungsband, Thomas Ludwig and Volkmar Pipek (Eds.). 1984–1988.
[53]
Marco Thomas. 2002. Informatische Modellbildung: Modellieren Von Modellen Als Ein Zentrales Element der Informatik für Den Allgemeinbildenden Schulunterricht. Ph. D. Dissertation, Universitat Potsdam.
[54]
Heikki Topi, Helena Karsten, Sue A. Brown, João Alvaro, Brian Donnellan, Jun Shen, Bernard C. Y. Tan, and Mark F. Thouin. 2017. MSIS 2016 global competency model for graduate degree programs in information systems. Commun. Assoc. Info. Syst. 40, 18 (2017).
[55]
Richard T. Watson. 2006. The essential skills of data modeling. J. Info. Syst. Edu. 17, 1 (2006), 39–41.
[56]
Franz E. Weinert. 2001. Concept of competence: A conceptual clarification. In Defining and Selecting Key Competences, Dominique Simone Rychen and Laura Hersh Salganik (Eds.). Hogrefe & Huber, Seattle, WA, 45–65.
[57]
Andreas Zendler, Cornelia Seitz, and Dieter Klaudt. 2015. cpm.4.CSE: Vorgehensmodell zur Entwicklung curriculum-basierter Kompetenzmodelle für die Informatikdidaktik. Notes Edu. Inform. Sec. A: Concepts Techn. 11, 1 (2015), 1–36.

Cited By

View all
  • (2024)Analyzing student response processes to refine and validate a competency model and competency-based assessment task typesFrontiers in Education10.3389/feduc.2024.13970279Online publication date: 14-Jun-2024

Index Terms

  1. Toward a Competence Model for Graphical Modeling

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Computing Education
    ACM Transactions on Computing Education  Volume 23, Issue 1
    March 2023
    396 pages
    EISSN:1946-6226
    DOI:10.1145/3578368
    • Editor:
    • Amy J. Ko
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 December 2022
    Online AM: 19 October 2022
    Accepted: 23 September 2022
    Revised: 28 July 2022
    Received: 28 September 2021
    Published in TOCE Volume 23, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Graphical modeling
    2. conceptual modeling
    3. computer science
    4. competence model
    5. higher education

    Qualifiers

    • Research-article
    • Refereed

    Funding Sources

    • German Federal Ministry of Education and Research (BMBF) within the project KEA-Mod (Kompetenzorientiertes E-Assessment für die grafische Modellierung)

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)153
    • Downloads (Last 6 weeks)18
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Analyzing student response processes to refine and validate a competency model and competency-based assessment task typesFrontiers in Education10.3389/feduc.2024.13970279Online publication date: 14-Jun-2024

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media