skip to main content
10.1145/3569192.3569194acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbraConference Proceedingsconference-collections
research-article

Phylogenetic Analysis of the Histone-like Protein (pA104R) Reveals High Conservation among African Swine Fever Virus (ASFV) Variants

Published:27 January 2023Publication History

ABSTRACT

The African Swine Fever Virus (ASFV) is a highly lethal virus that causes the death of pigs a week after its symptoms begin to manifest; hence, a mortality rate reaching up to 100%. Because of the crucial role of pork as a food preference worldwide, significant economic losses due to ASF outbreaks have been experienced. Despite the severity of this disease, there is still no known treatment that can successfully cure ASF. Recently, the role of the histone-like protein pA104R in the viral replication of ASFV has been unraveled and is gathering the attention of many researchers as a potential target to inhibit ASFV infectivity. However, little is known about the relationship of this protein with its homologs across variants of ASF. Therefore, in this study, we characterized their relationship and highlight conserved and variable regions that allow for the design of effective inhibitors. We acquired the nucleotide sequences of all pA104R homologs through the tBLASTn program. These sequences were subjected to multiple sequence alignment (MSA), and the evolutionary behavior of the sequences was then mapped out. The resulting tree was produced from 91 sequences taken from the NCBI database and contained five distinct clades. The phylogenetic analysis revealed that variants from clades “C” and “E” were highly variable, reflecting higher frequencies of gene mutation compared to the other clades. The alignment and midpoint-rooted phylogenetic tree showed the high conservation of pA104R across variants of ASFV. The variable residues were also determined. From these results, we conclude that drugs and drug-like compounds that can block the protein-DNA binding sites can be administered to afflicted pigs all over the world due to the high conservation of the protein across virulent strains. Thus, pA104R has high potential as a target protein for the inhibition of ASFV replication and spread.

References

  1. Haim Ashkenazy, Itamar Sela, Eli Levy Karin, Giddy Landan, and Tal Pupko. 2019. Multiple Sequence Alignment Averaging Improves Phylogeny Reconstruction. Systematic Biology 68, 1 (January 2019), 117–130. DOI:https://doi.org/10.1093/sysbio/syy036Google ScholarGoogle ScholarCross RefCross Ref
  2. Levon Aslanyan, Hranush Avagyan, and Zaven Karalyan. 2020. Whole-genome-based phylogeny of African swine fever virus. Veterinary World 13, 10 (October 2020), 2118–2125. DOI:https://doi.org/10.14202/vetworld.2020.2118-2125Google ScholarGoogle ScholarCross RefCross Ref
  3. Donatella Bacciu, Massimo Deligios, Giovanna Sanna, Maria Paola Madrau, Maria Luisa Sanna, Silvia Dei Giudici, and Annalisa Oggiano. 2016. Genomic analysis of Sardinian 26544/OG10 isolate of African swine fever virus. Virology Reports 6, (2016), 81–89. DOI:https://doi.org/10.1016/j.virep.2016.09.001Google ScholarGoogle Scholar
  4. A. D. S. Bastos, M.-L. Penrith, C. Crucière, J. L. Edrich, G. Hutchings, F. Roger, E. Couacy-Hymann, and G. R.Thomson. 2003. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Archives of Virology 148, 4 (March 2003). DOI:https://doi.org/10.1007/s00705-002-0946-8Google ScholarGoogle ScholarCross RefCross Ref
  5. Andreas D Baxevanis and David Landsman. 1996. Histone Sequence Database: A Compilation of Highly-Conserved Nucleoprotein Sequences. Nucleic Acids Research 24, 1 (January 1996), 245–247. DOI:https://doi.org/10.1093/nar/24.1.245Google ScholarGoogle ScholarCross RefCross Ref
  6. Dassault Systèmes BIOVIA. 2021. BIOVIA Discovery Studio.Google ScholarGoogle Scholar
  7. Richard P Bishop, Clare Fleischauer, Etienne P de Villiers, Edward A Okoth, Marisa Arias, Carmina Gallardo, and Chris Upton. 2015. Comparative analysis of the complete genome sequences of Kenyan African swine fever virus isolates within p72 genotypes IX and X. Virus Genes 50, 2 (2015), 303–309. DOI:https://doi.org/10.1007/s11262-014-1156-7Google ScholarGoogle ScholarCross RefCross Ref
  8. Patrick N Bisimwa, Juliette R Ongus, Lucilla Steinaa, Espoir B Bisimwa, Edwina Bochere, Eunice M Machuka, Jean-Baka Domelevo Entfellner, Edward Okoth, and Roger Pelle. 2021. The first complete genome sequence of the African swine fever virus genotype X and serogroup 7 isolated in domestic pigs from the Democratic Republic of Congo. Virol J 18, 1 (January 2021), 23. DOI:https://doi.org/10.1186/s12985-021-01497-0Google ScholarGoogle ScholarCross RefCross Ref
  9. Sandra Blome, Kati Franzke, and Martin Beer. 2020. African swine fever – A review of current knowledge. Virus Research 287, (2020), 198099. DOI:https://doi.org/10.1016/j.virusres.2020.198099Google ScholarGoogle Scholar
  10. Sandra Blome, Claudia Gabriel, and Martin Beer. 2014. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine 32, 31 (2014), 3879–3882. DOI:https://doi.org/10.1016/j.vaccine.2014.05.051Google ScholarGoogle ScholarCross RefCross Ref
  11. Laia Bosch-Camós, Elisabeth López, and Fernando Rodriguez. 2020. African swine fever vaccines: a promising work still in progress. Porcine Health Management 6, 1 (2020), 17. DOI:https://doi.org/10.1186/s40813-020-00154-2Google ScholarGoogle ScholarCross RefCross Ref
  12. Laia Bosch-Camós, Elisabeth López, and Fernando Rodriguez. 2020. African swine fever vaccines: a promising work still in progress. Porcine Health Manag 6, (July 2020), 17. DOI:https://doi.org/10.1186/s40813-020-00154-2Google ScholarGoogle Scholar
  13. David A G Chapman, Alistair C Darby, Melissa da Silva, Chris Upton, Alan D Radford, and Linda K Dixon. 2011. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg Infect Dis 17, 4 (April 2011), 599–605. DOI:https://doi.org/10.3201/eid1704.101283Google ScholarGoogle ScholarCross RefCross Ref
  14. David A.G. Chapman, Vasily Tcherepanov, Chris Upton, and Linda K. Dixon. 2008. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. Journal of General Virology 89, 2 (February 2008), 397–408. DOI:https://doi.org/10.1099/vir.0.83343-0Google ScholarGoogle ScholarCross RefCross Ref
  15. Christina CHEN, Sharmistha GHOSH, and Anne GROVE. 2004. Substrate specificity of Helicobacter pylori histone-like HU protein is determined by insufficient stabilization of DNA flexure points. Biochemical Journal 383, 2 (October 2004), 343–351. DOI:https://doi.org/10.1042/BJ20040938Google ScholarGoogle Scholar
  16. Xiao-Lin Chu, Bo-Wen Zhang, Quan-Guo Zhang, Bi-Ru Zhu, Kui Lin, and Da-Yong Zhang. 2018. Temperature responses of mutation rate and mutational spectrum in an Escherichia coli strain and the correlation with metabolic rate. BMC Evol Biol 18, 1 (August 2018), 126. DOI:https://doi.org/10.1186/s12862-018-1252-8Google ScholarGoogle ScholarCross RefCross Ref
  17. Maria Luisa Danzetta, Maria Luisa Marenzoni, Simona Iannetti, Paolo Tizzani, Paolo Calistri, and Francesco Feliziani. 2020. African swine fever: Lessons to learn from past eradication experiences. A systematic review. Frontiers in Veterinary Science 7, (2020). DOI:https://doi.org/10.3389/fvets.2020.00296Google ScholarGoogle Scholar
  18. Robert C Edgar. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 1 (2004), 113. DOI:https://doi.org/10.1186/1471-2105-5-113Google ScholarGoogle ScholarCross RefCross Ref
  19. Robert C Edgar. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 5 (March 2004), 1792–1797. DOI:https://doi.org/10.1093/nar/gkh340Google ScholarGoogle ScholarCross RefCross Ref
  20. Jan H Forth, Leonie F Forth, Jacqueline King, Oxana Groza, Alexandra Hübner, Ann Sofie Olesen, Dirk Höper, Linda K Dixon, Christopher L Netherton, Thomas Bruun Rasmussen, Sandra Blome, Anne Pohlmann, and Martin Beer. 2019. A Deep-Sequencing Workflow for the Fast and Efficient Generation of High-Quality African Swine Fever Virus Whole-Genome Sequences. Viruses 11, 9 (September 2019), 846. DOI:https://doi.org/10.3390/v11090846Google ScholarGoogle ScholarCross RefCross Ref
  21. Ferdinando B Freitas, Margarida Simões, Gonçalo Frouco, Carlos Martins, and Fernando Ferreira. 2019. Towards the Generation of an ASFV-pA104R DISC Mutant and a Complementary Cell Line-A Potential Methodology for the Production of a Vaccine Candidate. Vaccines (Basel) 7, 3 (July 2019), 68. DOI:https://doi.org/10.3390/vaccines7030068Google ScholarGoogle Scholar
  22. Inmaculada Galindo and Covadonga Alonso. 2017. African swine fever virus: A review. Viruses 9. DOI:https://doi.org/10.3390/v9050103Google ScholarGoogle Scholar
  23. C. Gallardo, A. Soler, R. Nieto, C. Cano, V. Pelayo, M. A. Sánchez, G. Pridotkas, J. Fernandez-Pinero, V. Briones, and M. Arias. 2017. Experimental Infection of Domestic Pigs with African Swine Fever Virus Lithuania 2014 Genotype II Field Isolate. Transboundary and Emerging Diseases 64, 1 (February 2017), 300–304. DOI:https://doi.org/10.1111/tbed.12346Google ScholarGoogle ScholarCross RefCross Ref
  24. Elisabeth Gasteiger, Alexandre Gattiker, Christine Hoogland, Ivan Ivanyi, Ron D Appel, and Amos Bairoch. 2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31, 13 (July 2003), 3784–3788. DOI:https://doi.org/10.1093/nar/gkg563Google ScholarGoogle ScholarCross RefCross Ref
  25. Natasha N Gaudreault, Daniel W Madden, William C Wilson, Jessie D Trujillo, and Juergen A Richt. 2020. African Swine Fever Virus: An Emerging DNA Arbovirus. Frontiers in Veterinary Science 7, (2020), 215. Retrieved from https://www.frontiersin.org/article/10.3389/fvets.2020.00215Google ScholarGoogle Scholar
  26. Gautier Gilliaux, Mutien Garigliany, Alain Licoppe, Julien Paternostre, Christophe Lesenfants, Annick Linden, and Daniel Desmecht. 2019. Newly emerged African swine fever virus strain Belgium/Etalle/wb/2018: Complete genomic sequence and comparative analysis with reference p72 genotype II strains. Transboundary and Emerging Diseases 66, 6 (November 2019), 2566–2591. DOI:https://doi.org/10.1111/tbed.13302Google ScholarGoogle ScholarCross RefCross Ref
  27. Frouco Gonçalo, Freitas Ferdinando B, Coelho João, Leitão Alexandre, Martins Carlos, Ferreira Fernando, and Frueh Klaus. 2021. DNA-Binding Properties of African Swine Fever Virus pA104R, a Histone-Like Protein Involved in Viral Replication and Transcription. Journal of Virology 91, 12 (October 2021), e02498-16. DOI:https://doi.org/10.1128/JVI.02498-16Google ScholarGoogle Scholar
  28. Fredrik Granberg, Claudia Torresi, Annalisa Oggiano, Maja Malmberg, Carmen Iscaro, Gian Mario de Mia, and Sándor Belák. 2016. Complete Genome Sequence of an African Swine Fever Virus Isolate from Sardinia, Italy. Genome Announc 4, 6 (November 2016), e01220-16. DOI:https://doi.org/10.1128/genomeA.01220-16Google ScholarGoogle ScholarCross RefCross Ref
  29. Jaime Huerta-Cepas, François Serra, and Peer Bork. 2016. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol Biol Evol 33, 6 (June 2016), 1635–1638. DOI:https://doi.org/10.1093/molbev/msw046Google ScholarGoogle ScholarCross RefCross Ref
  30. Dmitri Kamashev, Yulia Agapova, Sergey Rastorguev, Anna A. Talyzina, Konstantin M. Boyko, Dmitry A. Korzhenevskiy, Anna Vlaskina, Raif Vasilov, Vladimir I. Timofeev, and Tatiana v. Rakitina. 2017. Comparison of histone-like HU protein DNA-binding properties and HU/IHF protein sequence alignment. PLOS ONE 12, 11 (November 2017), e0188037. DOI:https://doi.org/10.1371/journal.pone.0188037Google ScholarGoogle ScholarCross RefCross Ref
  31. Ganna Kovalenko, Anne-Lise Ducluzeau, Liudmyla Ishchenko, Mykola Sushko, Maryna Sapachova, Nataliia Rudova, Oleksii Solodiankin, Anton Gerilovych, Ralf Dagdag, Matthew Redlinger, Maksym Bezymennyi, Maciej Frant, Christian E Lange, Inna Dubchak, Andrii A Mezhenskyi, Serhiy Nychyk, Eric Bortz, and Devin M Drown. 2019. Complete Genome Sequence of a Virulent African Swine Fever Virus from a Domestic Pig in Ukraine. Microbiol Resour Announc 8, 42 (October 2019), e00883-19. DOI:https://doi.org/10.1128/MRA.00883-19Google ScholarGoogle ScholarCross RefCross Ref
  32. T Lewis, L Zsak, T G Burrage, Z Lu, G F Kutish, J G Neilan, and D L Rock. 2000. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. J Virol 74, 3 (February 2000), 1275–1285. DOI:https://doi.org/10.1128/jvi.74.3.1275-1285.2000Google ScholarGoogle ScholarCross RefCross Ref
  33. Ruili Liu, Yeping Sun, Yan Chai, Su Li, Shihua Li, Liang Wang, Jiaqi Su, Shaoxiong Yu, Jinghua Yan, Feng Gao, Gaiping Zhang, Hua-Ji Qiu, George F Gao, Jianxun Qi, and Han Wang. 2020. The structural basis of African swine fever virus pA104R binding to DNA and its inhibition by stilbene derivatives. Proceedings of the National Academy of Sciences 117, 20 (May 2020), 11000. DOI:https://doi.org/10.1073/pnas.1922523117Google ScholarGoogle Scholar
  34. Alexander Malogolovkin, Galina Burmakina, Ilya Titov, Alexey Sereda, Andrey Gogin, Elena Baryshnikova, and Denis Kolbasov. 2015. Comparative analysis of african swine fever virus genotypes and serogroups. Emerging Infectious Diseases 21, 2 (2015), 312–315. DOI:https://doi.org/10.3201/eid2102.140649Google ScholarGoogle ScholarCross RefCross Ref
  35. Alexander Malogolovkin and Denis Kolbasov. 2019. Genetic and antigenic diversity of African swine fever virus. Virus Research 271. DOI:https://doi.org/10.1016/j.virusres.2019.197673Google ScholarGoogle Scholar
  36. S A Nadler. 1995. Advantages and disadvantages of molecular phylogenetics: a case study of ascaridoid nematodes. J Nematol 27, 4 (December 1995), 423–432. Retrieved from https://pubmed.ncbi.nlm.nih.gov/19277308Google ScholarGoogle Scholar
  37. S Ndlovu, Williamson A.-L., R Malesa, van Heerden J, C I Boshoff, A D S Bastos, L Heath, O Carulei, and Roux Simon. 2022. Genome Sequences of Three African Swine Fever Viruses of Genotypes I, III, and XXII from South Africa and Zambia, Isolated from Ornithodoros Soft Ticks. Microbiology Resource Announcements 9, 10 (April 2022), e01376-19. DOI:https://doi.org/10.1128/MRA.01376-19Google ScholarGoogle Scholar
  38. Emma P Njau, Jean-Baka Domelevo Entfellner, Eunice M Machuka, Edwina N Bochere, Sarah Cleaveland, Gabriel M Shirima, Lughano J Kusiluka, Chris Upton, Richard P Bishop, Roger Pelle, and Edward A Okoth. 2021. The first genotype II African swine fever virus isolated in Africa provides insight into the current Eurasian pandemic. Scientific Reports 11, 1 (2021), 13081. DOI:https://doi.org/10.1038/s41598-021-92593-2Google ScholarGoogle ScholarCross RefCross Ref
  39. Ferenc Olasz, István Mészáros, Szilvia Marton, Győző L Kaján, Vivien Tamás, Gabriella Locsmándi, Tibor Magyar, Ádám Bálint, Krisztián Bányai, and Zoltán Zádori. 2019. A Simple Method for Sample Preparation to Facilitate Efficient Whole-Genome Sequencing of African Swine Fever Virus. Viruses 11, 12 (December 2019), 1129. DOI:https://doi.org/10.3390/v11121129Google ScholarGoogle ScholarCross RefCross Ref
  40. I C Pan. 1992. African Swine Fever Virus: Generation of Subpopulations with Altered Immunogenicity and Virulence Following Passage in Cell Cultures. Journal of Veterinary Medical Science 54, 1 (1992), 43–52. DOI:https://doi.org/10.1292/jvms.54.43Google ScholarGoogle ScholarCross RefCross Ref
  41. Muhammad Tariq Pervez, Masroor Ellahi Babar, Asif Nadeem, Muhammad Aslam, Ali Razaawan, Naeem Aslam, Tanveer Hussain, Nasir Naveed, Salman Qadri, Usman Waheed, and Muhammad Shoaib. 2014. Evaluating the accuracy and effciency of multiple sequence alignment methods. Evolutionary Bioinformatics 10, (December 2014), 205–217. DOI:https://doi.org/10.4137/EBo.s19199Google ScholarGoogle Scholar
  42. Jonathan Pevsner. 2004. Bioinformatics and Functional Genomics. John Wiley & Sons, Inc., Hoboken, NJ, USA. DOI:https://doi.org/10.1002/047145916XGoogle ScholarGoogle Scholar
  43. Morgan N Price, Paramvir S Dehal, and Adam P Arkin. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26, 7 (July 2009), 1641–1650. DOI:https://doi.org/10.1093/molbev/msp077Google ScholarGoogle ScholarCross RefCross Ref
  44. Ana Luísa Reis, R. M.E. Parkhouse, Ana Raquel Penedos, Carlos Martins, and Alexandre Leitáo. 2007. Systematic analysis of longitudinal serological responses of pigs infected experimentally with African swine fever virus. Journal of General Virology 88, 9 (September 2007), 2426–2434. DOI:https://doi.org/10.1099/vir.0.82857-0Google ScholarGoogle ScholarCross RefCross Ref
  45. Liu Ruili, Sun Yeping, Chai Yan, Li Su, Li Shihua, Wang Liang, Su Jiaqi, Yu Shaoxiong, Yan Jinghua, Gao Feng, Zhang Gaiping, Qiu Hua-Ji, Gao George F, Qi Jianxun, and Wang Han. 2020. The structural basis of African swine fever virus pA104R binding to DNA and its inhibition by stilbene derivatives. Proceedings of the National Academy of Sciences 117, 20 (May 2020), 11000–11009. DOI:https://doi.org/10.1073/pnas.1922523117Google ScholarGoogle Scholar
  46. P J Sánchez-Cordón, M Montoya, A L Reis, and L K Dixon. 2018. African swine fever: A re-emerging viral disease threatening the global pig industry. Vet J 233, (March 2018), 41–48. DOI:https://doi.org/10.1016/j.tvjl.2017.12.025Google ScholarGoogle ScholarCross RefCross Ref
  47. Hidetoshi Shimodaira. 2002. An Approximately Unbiased Test of Phylogenetic Tree Selection. Systematic Biology 51, 3 (May 2002), 492–508. DOI:https://doi.org/10.1080/10635150290069913Google ScholarGoogle ScholarCross RefCross Ref
  48. Sun-Young Sunwoo, Daniel Pérez-Núñez, Igor Morozov, Elena G Sánchez, Natasha N Gaudreault, Jessie D Trujillo, Lina Mur, Marisa Nogal, Daniel Madden, Kinga Urbaniak, In Joong Kim, Wenjun Ma, Yolanda Revilla, and Juergen A Richt. 2019. DNA-Protein Vaccination Strategy Does Not Protect from Challenge with African Swine Fever Virus Armenia 2007 Strain. Vaccines (Basel) 7, 1 (January 2019), 12. DOI:https://doi.org/10.3390/vaccines7010012Google ScholarGoogle Scholar
  49. Ana Catarina Urbano and Fernando Ferreira. 2020. Role of the DNA-Binding Protein pA104R in ASFV Genome Packaging and as a Novel Target for Vaccine and Drug Development. Vaccines (Basel) 8, 4 (October 2020), 585. DOI:https://doi.org/10.3390/vaccines8040585Google ScholarGoogle Scholar
  50. Ana Catarina Urbano and Fernando Ferreira. 2020. Role of the DNA-Binding Protein pA104R in ASFV Genome Packaging and as a Novel Target for Vaccine and Drug Development. Vaccines (Basel) 8, 4 (October 2020), 585. DOI:https://doi.org/10.3390/vaccines8040585Google ScholarGoogle Scholar
  51. Tao Wang, Yuan Sun, and Hua Ji Qiu. 2018. African swine fever: An unprecedented disaster and challenge to China. Infectious Diseases of Poverty 7. DOI:https://doi.org/10.1186/s40249-018-0495-3Google ScholarGoogle Scholar
  52. Michael Weiß and Markus Göker. 2011. Chapter 12 - Molecular Phylogenetic Reconstruction. In The Yeasts (Fifth Edition), Cletus P Kurtzman, Jack W Fell and Teun Boekhout (eds.). Elsevier, London, 159–174. DOI:https://doi.org/10.1016/B978-0-444-52149-1.00012-4Google ScholarGoogle Scholar
  53. Xuexia Wen, Xijun He, Xiang Zhang, Xianfeng Zhang, Liling Liu, Yuntao Guan, Ying Zhang, and Zhigao Bu. 2019. Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerg Microbes Infect 8, 1 (2019), 303–306. DOI:https://doi.org/10.1080/22221751.2019.1565915Google ScholarGoogle ScholarCross RefCross Ref
  54. Marco Wiltgen. 2019. Algorithms for Structure Comparison and Analysis: Homology Modelling of Proteins. In Encyclopedia of Bioinformatics and Computational Biology, Shoba Ranganathan, Michael Gribskov, Kenta Nakai and Christian Schönbach (eds.). Academic Press, Oxford, 38–61. DOI:https://doi.org/10.1016/B978-0-12-809633-8.20484-6Google ScholarGoogle Scholar
  55. Dongyan Xiong, Xiaoxu Zhang, Junping Yu, and Hongping Wei. 2019. Rapid phylogenetic analysis of African swine fever virus from metagenomic sequences. bioRxiv (2019). DOI:https://doi.org/10.1101/756726Google ScholarGoogle Scholar
  56. Rafael J Yáñez, Javier M Rodrı́guez, Maria L Nogal, Luis Yuste, Carlos Enrı́quez, Jose F Rodriguez, and Eladio Viñuela. 1995. Analysis of the Complete Nucleotide Sequence of African Swine Fever Virus. Virology 208, 1 (1995), 249–278. DOI:https://doi.org/10.1006/viro.1995.1149Google ScholarGoogle ScholarCross RefCross Ref
  57. L Zsak, M v Borca, G R Risatti, A Zsak, R A French, Z Lu, G F Kutish, J G Neilan, J D Callahan, W M Nelson, and D L Rock. 2005. Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. J Clin Microbiol 43, 1 (January 2005), 112–119. DOI:https://doi.org/10.1128/JCM.43.1.112-119.2005Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Phylogenetic Analysis of the Histone-like Protein (pA104R) Reveals High Conservation among African Swine Fever Virus (ASFV) Variants

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICBRA '22: Proceedings of the 9th International Conference on Bioinformatics Research and Applications
      September 2022
      165 pages
      ISBN:9781450396868
      DOI:10.1145/3569192

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 January 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)24
      • Downloads (Last 6 weeks)2

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format