skip to main content
research-article

Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques and Hybrid Deep Learning Model

Published: 15 January 2024 Publication History

Abstract

Depression is a kind of emotion that negatively impacts people's daily lives. The number of people suffering from long-term feelings is increasing every year across the globe. Depressed patients may engage in self-harm behaviors, which occasionally result in suicide. Many psychiatrists struggle to identify the presence of mental illness or negative emotion early to provide a better course of treatment before they reach a critical stage. One of the most challenging problems is detecting depression in people at the earliest possible stage. Researchers are using Natural Language Processing (NLP) techniques to analyze text content uploaded on social media, which helps to design approaches for detecting depression. This work analyses numerous prior studies that used learning techniques to identify depression. The existing methods suffer from better model representation problems to detect depression from the text with high accuracy. The present work addresses a solution to these problems by creating a new hybrid deep learning neural network design with better text representations called “Fasttext Convolution Neural Network with Long Short-Term Memory (FCL).” In addition, this work utilizes the advantage of NLP to simplify the text analysis during the model development. The FCL model comprises fasttext embedding for better text representation considering out-of-vocabulary (OOV) with semantic information, a convolution neural network (CNN) architecture to extract global information, and Long Short-Term Memory (LSTM) architecture to extract local features with dependencies. The present work was implemented on real-world datasets utilized in the literature. The proposed technique provides better results than the state-of-the-art to detect depression with high accuracy.

References

[2]
A. Halfin. 2007. Depression: The benefits of early and appropriate treatment. American Journal of Managed Care 13, 4 (2007), S92.
[3]
A. A. Nierenberg, M. H. Trivedi, M. Fava, M. M. Biggs, K. Shores-Wilson, S. R. Wisniewski, and A. J. Rush. 2007. Family history of mood disorder and characteristics of major depressive disorder: A STAR∗ D (sequenced treatment alternatives to relieve depression) study. Journal of Psychiatric Research 41, 3-4 (2007), 214–221.
[4]
E. A. Pataky and U. Ehlert. 2020. Longitudinal assessment of symptoms of postpartum mood disorder in women with and without a history of depression. Archives of Women's Mental Health 23, 3 (2020), 391–399.
[5]
J. M. Havigerová, J. Haviger, D. Kučera, and P. Hoffmannová. 2019. Text-based detection of the risk of depression. Frontiers in Psychology 10 (2019), 513.
[6]
A. Li, D. Jiao, and T. Zhu. 2018. Detecting depression stigma on social media: A linguistic analysis. Journal of Affective Disorders 232 (2018), 358–362.
[7]
L. Squarcina, F. M. Villa, M. Nobile, E. Grisan, and P. Brambilla. 2021. Deep learning for the prediction of treatment response in depression. Journal of Affective Disorders 281 (2021), 618–622.
[8]
T. Zhang, A. M. Schoene, S. Ji, and S. Ananiadou. 2022. Natural language processing applied to mental illness detection: A narrative review. NPJ Digital Medicine 5, 1 (2022), 1–13.
[9]
A. Leis, F. Ronzano, M. A. Mayer, L. I. Furlong, and F. Sanz. 2019. Detecting signs of depression in tweets in Spanish: Behavioral and linguistic analysis. Journal of Medical Internet Research 21, 6 (2019), e14199.
[10]
L. S. Jones, E. Anderson, M. Loades, R. Barnes, and E. Crawley. 2020. Can linguistic analysis be used to identify whether adolescents with a chronic illness are depressed? Clinical Psychology & Psychotherapy 27, 2 (2020), 179–192.
[11]
A. Picardi, I. Lega, L. Tarsitani, M. Caredda, G. Matteucci, M. P. Zerella, R. Miglio, A. Gigantesco, M. Cerbo, A. Gaddini, F. Spandonaro, M. Biondi. 2016. The SET-DEP Group, A randomised controlled trial of the effectiveness of a program for early detection and treatment of depression in primary care. Journal of Affective Disorders 198 (2016), 96–101.
[12]
K. Rost, J. L. Smith, and M. Dickinson. 2004. The effect of improving primary care depression management on employee absenteeism and productivity a randomized trial. Medical Care 42, 12 (2004), 1202.
[15]
A. Dhand, D. A. Luke, C. E. Lang, and J. M. Lee. 2016. Social networks and neurological illness. Nature Reviews Neurology 12, 10 (2016), 605–612.
[16]
S. C. Guntuku, D. B. Yaden, M. L. Kern, L. H. Ungar, and J. C. Eichstaedt. 2017. Detecting depression and mental illness on social media: An integrative review. Current Opinion in Behavioral Sciences 18 (2017), 43–49.
[17]
M. S. Akhtar, P. Sawant, S. Sen, A. Ekbal, and P. Bhattacharyya. 2018. Improving word embedding coverage in less-resourced languages through multi-linguality and cross-linguality: A case study with aspect-based sentiment analysis. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) 18, 2 (2018), 1–22.
[18]
S. Kanwal, K. Malik, K. Shahzad, F. Aslam, and Z. Nawaz. 2019. Urdu named entity recognition: Corpus generation and deep learning applications. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) 19, 1 (2019), 1–13.
[19]
S. Selva Birunda and R. Kanniga Devi. 2021. A review on word embedding techniques for text classification. Innovative Data Communication Technologies and Application (2021), 267–281.
[20]
S. Tsugawa, Y. Kikuchi, F. Kishino, K. Nakajima, Y. Itoh, and H. Ohsaki. 2015. Recognizing depression from Twitter activity. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. 3187–3196.
[21]
A. G. Reece, A. J. Reagan, K. L. Lix, P. S. Dodds, C. M. Danforth, and E. J. Langer. 2017. Forecasting the onset and course of mental illness with Twitter data. Scientific Reports 7, 1 (2017), 1–11.
[22]
V. M. Prieto, S. Matos, M. Alvarez, F. Cacheda, and J. L. Oliveira. 2014. Twitter: A good place to detect health conditions. PloS One 9, 1 (2014), e86191.
[23]
R. Chunara, J. R. Andrews, and J. S. Brownstein. 2012. Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. The American Journal of Tropical Medicine and Hygiene 86, 1 (2012), 39.
[24]
A. E. Aladağ, S. Muderrisoglu, N. B. Akbas, O. Zahmacioglu, and H. O. Bingol. 2018. Detecting suicidal ideation on forums: Proof-of-concept study. Journal of Medical Internet Research 20, 6 (2018), e9840.
[25]
S. E. Holleran. 2010. The Early Detection of Depression from Social Networking Sites. The University of Arizona. https://www.proquest.com/openview/f713c1b53089bcf64f829b266d381a6c/1?pq-origsite=gscholar&cbl=18750.
[26]
G. Shen, J. Jia, L. Nie, F. Feng, C. Zhang, T. Hu, and W. Zhu. 2017. Depression detection via harvesting social media: A multimodal dictionary learning solution. In Proceedings of IJCAI. 3838–3844.
[27]
I. Pirina and Ç. Çöltekin. 2018. Identifying depression on Reddit: The effect of raining data. In Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task. 9–12.
[28]
J. H. Shen and F. Rudzicz. 2017. Detecting anxiety through Reddit. In Proceedings of the 4th Workshop on Computational Linguistics and Clinical Psychology—From Linguistic Signal to Clinical Reality. 58–65.
[29]
M. R. Islam, A. R. M. Kamal, N. Sultana, R. Islam, and M. A. Moni. 2018. Detecting depression using k-nearest neighbors (knn) classification technique. In Proceedings of the 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). IEEE, 1–4.
[30]
Z. Peng, Q. Hu, and J. Dang. 2019. Multi-kernel SVM based depression recognition using social media data. International Journal of Machine Learning and Cybernetics 10, 1 (2019), 43–57.
[31]
S. Almouzini and A. Alageel. 2019. Detecting Arabic depressed users from Twitter data. Procedia Computer Science 163 (2019), 257–265.
[32]
H. S. AlSagri and M. Ykhlef. 2020. Machine learning-based approach for depression detection in twitter using content and activity features. IEICE Transactions on Information and Systems 103, 8 (2020), 1825–1832.
[33]
A. U. Hassan, J. Hussain, M. Hussain, M. Sadiq, and S. Lee. 2017. Sentiment analysis of social networking sites (SNS) data using machine learning approach for the measurement of depression. In Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 138–140.
[34]
J. R. Sato, J. Moll, S. Green, J. F. Deakin, C. E. Thomaz, and R. Zahn. 2015. Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression. Psychiatry Research: Neuroimaging 233, 2 (2015), 289–291.
[35]
C. Su, Z. Xu, J. Pathak, and F. Wang. 2020. Deep learning in mental health outcome research: A scoping review. Translational Psychiatry 10, 1 (2020), 1–26.
[36]
A. Sarkar, A. Singh, and R. Chakraborty. 2022. A deep learning-based comparative study to track mental depression from EEG data. Neuroscience Informatics (2022), 100039.
[37]
A. H. Orabi, P. Buddhitha, M. H. Orabi, and D. Inkpen. 2018. Deep learning for depression detection of Twitter users. In Proceedings of the 5thWorkshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic. 88–97.
[38]
U. Ahmed, R. H. Jhaveri, G. Srivastava, and J. C. W. Lin. 2022. Explainable deep attention active learning for sentimental analytics of mental disorder. Transactions on Asian and Low-Resource Language Information Processing (2022).
[39]
U. Ahmed, J. C. W. Lin, and G. Srivastava. 2022. Fuzzy contrast set based deep attention network for lexical analysis and mental health treatment. Transactions on Asian and Low-Resource Language Information Processing 21, 5 (2022), 1–16.
[40]
T. Vo. 2022. An integrated topic modelling and graph neural network for improving cross-lingual text classification. Transactions on Asian and Low-Resource Language Information Processing (2022).
[41]
T. A. Rana, K. Shahzadi, T. Rana, A. Arshad, and M. Tubishat. 2021. An Unsupervised Approach for Sentiment Analysis on Social Media Short Text Classification in Roman Urdu. Transactions on Asian and Low-Resource Language Information Processing 21, 2 (2021), 1–16.
[42]
J. J. Stephen and P. Prabu. 2019. Detecting the magnitude of depression in Twitter users using sentiment analysis. International Journal of Electrical and Computer Engineering 9, 4 (2019), 3247.
[43]
A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems (2012), 25.
[44]
Y. Zhang and B. Wallace. 2015. A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification. arXiv preprint arXiv:1510.03820.
[45]
A. Prakash, C. Brockett, and P. Agrawal. 2016. Emulating human conversations using convolutional neural network-based IR. arXiv preprint arXiv:1606.07056.
[46]
S. M. Zahiri and J. D. Choi. 2018. Emotion detection on TV show transcripts with sequence-based convolutional neural networks. In Proceedings of the Workshops at the 32nd AAAI Conference on Artificial Intelligence.
[47]
L. Wikarsa and S. N. Thahir. 2015. A text mining application of emotion classifications of Twitter's users using Naive Bayes method. In Proceedings of the 2015 1st International Conference on Wireless and Telematics (ICWT). IEEE, 1–6.
[48]
S. Grover and A. Verma. 2016. Design for emotion detection of Punjabi text using hybrid approach. In Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT). IEEE 2, 1–6.
[49]
M. Nadeem. 2016. Identifying depression on Twitter. arXiv preprint arXiv:1607.07384.
[50]
M. M. Aldarwish and H. F. Ahmad. 2017. Predicting depression levels using social media posts. In Proceedings of the 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS). IEEE, 277–280.
[51]
M. Islam, M. A. Kabir, A. Ahmed, A. R. M. Kamal, H. Wang, and A. Ulhaq. 2018. Depression detection from social network data using machine learning techniques. Health Information Science and Systems 6, 1 (2018), 1–12.
[52]
A. Chatterjee, U. Gupta, M. K. Chinnakotla, R. Srikanth, M. Galley, and P. Agrawal. 2019. Understanding emotions in text using deep learning and big data. Computers in Human Behavior 93 (2019), 309–317.
[53]
M. M. Tadesse, H. Lin, B. Xu, and L. Yang. 2019. Detection of depression-related posts in Reddit social media forum. IEEE Access 7 (2019), 44883–44893.
[54]
J. Kim, J. Lee, E. Park, and J. Han. 2020. A deep learning model for detecting mental illness from user content on social media. Scientific Reports 10, 1 (2020), 1–6.
[55]
M. Z. Uddin, K. K. Dysthe, A. Følstad, and P. B. Brandtzaeg. 2022. Deep learning for prediction of depressive symptoms in a large textual dataset. Neural Computing and Applications 34, 1 (2022), 721–744.
[56]
A. Amanat, M. Rizwan, A. R. Javed, M. Abdelhaq, R. Alsaqour, S. Pandya, and M. Uddin. 2022. Deep learning for depression detection from textual data. Electronics 11, 5 (2022), 676.
[57]
H. K. Cho. 2021. Twitter Depression Data Set Tweets Scraped from Twitter, Depressed and Non-Depressed. 2021. Available online: https://www.kaggle.com/hyunkic/twitter-depression-dataset (accessed on 15 January 2022).
[59]
Y. D. Prabowo, H. L. H. S. Warnars, W. Budiharto, A. I. Kistijantoro, and Y. Heryadi. 2018. LSTM and simple RNN comparison in the problem of sequence-to-sequence on conversation data using Bahasa Indonesia. In Proceedings of the 2018 Indonesian Association for Pattern Recognition International Conference (INAPR). IEEE, 51–56.
[60]
M. Moradi, S. A. Sadrossadat, and V. Derhami. 2021. Long short-term memory neural networks for modeling nonlinear electronic components. IEEE Transactions on Components, Packaging and Manufacturing Technology 11, 5 (2021), 840–847.
[64]
A. I. Iliev, M. S. Scordilis, J. P. Papa, and A. X. Falcão. 2010. Spoken emotion recognition through optimum-path forest classification using glottal features. Computer Speech & Language 24, 3 (2010), 445–460.
[65]
S. Kwon. 2019. A CNN-assisted enhanced audio signal processing for speech emotion recognition. Sensors 20, 1 (2019), 183.

Cited By

View all
  • (2025)Physics-Constrained Three-Dimensional Swin Transformer for Gravity Data InversionRemote Sensing10.3390/rs1701011317:1(113)Online publication date: 1-Jan-2025
  • (2025)Review of Advancements in Depression Detection Using Social Media DataIEEE Transactions on Computational Social Systems10.1109/TCSS.2024.344862412:1(77-100)Online publication date: Feb-2025
  • (2025)Depression Detection in Social Media: A Comprehensive Review of Machine Learning and Deep Learning TechniquesIEEE Access10.1109/ACCESS.2025.353086213(12789-12818)Online publication date: 2025
  • Show More Cited By

Index Terms

  1. Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques and Hybrid Deep Learning Model

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Asian and Low-Resource Language Information Processing
    ACM Transactions on Asian and Low-Resource Language Information Processing  Volume 23, Issue 1
    January 2024
    385 pages
    EISSN:2375-4702
    DOI:10.1145/3613498
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 15 January 2024
    Online AM: 05 November 2022
    Accepted: 25 September 2022
    Revised: 07 September 2022
    Received: 08 July 2022
    Published in TALLIP Volume 23, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Deep learning
    2. depression
    3. Natural Language Processing
    4. social media conversations

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2,525
    • Downloads (Last 6 weeks)235
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Physics-Constrained Three-Dimensional Swin Transformer for Gravity Data InversionRemote Sensing10.3390/rs1701011317:1(113)Online publication date: 1-Jan-2025
    • (2025)Review of Advancements in Depression Detection Using Social Media DataIEEE Transactions on Computational Social Systems10.1109/TCSS.2024.344862412:1(77-100)Online publication date: Feb-2025
    • (2025)Depression Detection in Social Media: A Comprehensive Review of Machine Learning and Deep Learning TechniquesIEEE Access10.1109/ACCESS.2025.353086213(12789-12818)Online publication date: 2025
    • (2025)A Hybrid Transformer Architecture for Multiclass Mental Illness Prediction Using Social Media TextIEEE Access10.1109/ACCESS.2024.351930813(12148-12167)Online publication date: 2025
    • (2025)Enhancing Arabic text-to-speech synthesis for emotional expression in visually impaired individuals using the artificial hummingbird and hybrid deep learning modelAlexandria Engineering Journal10.1016/j.aej.2025.02.011119(493-502)Online publication date: Apr-2025
    • (2025)Early Depression Detection from Social Media: State-of-the-Art ApproachesAI-Driven: Social Media Analytics and Cybersecurity10.1007/978-3-031-80334-5_4(61-75)Online publication date: 4-Mar-2025
    • (2024)Mental illness detection through harvesting social media: a comprehensive literature reviewPeerJ Computer Science10.7717/peerj-cs.229610(e2296)Online publication date: 7-Oct-2024
    • (2024)Detection of Depression in Social Media Posts using Emotional Intensity AnalysisEngineering, Technology & Applied Science Research10.48084/etasr.746114:5(16207-16211)Online publication date: 9-Oct-2024
    • (2024)M.I.N.I.-KID interviews with adolescents: a corpus-based language analysis of adolescents with depressive disorders and the possibilities of continuation using Chat GPTFrontiers in Psychiatry10.3389/fpsyt.2024.142582015Online publication date: 19-Dec-2024
    • (2024)Análisis del Lenguaje Natural para la Identificación de Alteraciones Mentales en Redes Sociales: Una Revisión Sistemática de EstudiosRevista Politécnica10.33333/rp.vol53n1.0653:1(57-72)Online publication date: 9-Feb-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media