skip to main content
10.1145/3571560.3571572acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicaaiConference Proceedingsconference-collections
research-article

A Comprehensive Study on Machine Learning in Breast Cancer Detection and Classification

Published:12 January 2023Publication History

ABSTRACT

Breast cancer is one of the diseases that led to a huge number of deaths in the recent decades. One of the major issues that affect the recovery procedure is the early detection of the disease. Thus, in this paper, several machine learning algorithms that support the early detection process, along with the impact on combining these algorithms with hyperparameter tuning optimization techniques will be presented. Moreover, we conducted a comparison among proposed techniques to figure out which classifier model can achieve better detection accuracy of the disease.

References

  1. “Breast cancer,” Clevel. Clin., [Online]. Available: https://my.clevelandclinic.org/health/diseases/3986-breast-cancerGoogle ScholarGoogle Scholar
  2. B. C. C. UK, “Breast cancer facts and statistics 2016,” Breast Cancer Care, 2017, [Online]. Available: https://www.breastcancer.org/facts-statisticsGoogle ScholarGoogle Scholar
  3. S. Sharma and S. Deshpande, “Breast Cancer Classification Using Machine Learning Algorithms,” Lect. Notes Networks Syst., vol. 141, no. 14, pp. 571–578, 2021, doi: 10.1007/978-981-15-7106-0_56.Google ScholarGoogle ScholarCross RefCross Ref
  4. A. B. Nassif, M. A. Talib, Q. Nasir, Y. Afadar, and O. Elgendy, “Breast cancer detection using artificial intelligence techniques: A systematic literature review,” Artif. Intell. Med., vol. 127, no. May, 2022, doi: 10.1016/j.artmed.2022.102276.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Z. Guo, L. Xu, and N. Ali Asgharzadeholiaee, “A Homogeneous Ensemble Classifier for Breast Cancer Detection Using Parameters Tuning of MLP Neural Network,” Appl. Artif. Intell., vol. 00, no. 00, pp. 1–21, 2022, doi: 10.1080/08839514.2022.2031820.Google ScholarGoogle Scholar
  6. O. L. M. William H. Wolberg,W. Nick Street, “Wisconsin Diagnostic Breast Cancer (WDBC),” 1995.Google ScholarGoogle Scholar
  7. H. Asri, H. Mousannif, H. Al Moatassime, and T. Noël, “Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis,” 2016.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Karthik, R. Srinivasa Perumal, and P. V. S. S. R. Chandra Mouli, “Breast cancer classification using deep neural networks,” Knowl. Comput. Its Appl. Knowl. Manip. Process. Tech. Vol. 1, pp. 227–241, 2018, doi: 10.1007/978-981-10-6680-1_12.Google ScholarGoogle Scholar
  9. P. K. P, M. A. B. V, and G. G. Nair, “An efficient classification framework for breast cancer using hyper parameter tuned Random Decision Forest Classifier and Bayesian Optimization,” Biomed. Signal Process. Control, vol. 68, no. February, p. 102682, 2021, doi: 10.1016/j.bspc.2021.102682.Google ScholarGoogle ScholarCross RefCross Ref
  10. O. L. M. William H. Wolberg, W. Nick Street, “Wisconsin Prognostic Breast Cancer (WPBC),” 1995.Google ScholarGoogle Scholar
  11. A. Hizukuri, R. Nakayama, M. Nara, M. Suzuki, and K. Namba, “Computer-Aided Diagnosis Scheme for Distinguishing Between Benign and Malignant Masses on Breast DCE-MRI Images Using Deep Convolutional Neural Network with Bayesian Optimization,” J. Digit. Imaging, vol. 34, no. 1, pp. 116–123, 2021, doi: 10.1007/s10278-020-00394-2.Google ScholarGoogle ScholarCross RefCross Ref
  12. S. R. Sannasi Chakravarthy and H. Rajaguru, “Deep-features with Bayesian optimized classifiers for the breast cancer diagnosis,” Int. J. Imaging Syst. Technol., vol. 31, no. 4, pp. 1861–1881, 2021, doi: 10.1002/ima.22570.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. . Suckling, “The mammographic image analysis society digital mammogram database.,” 1994.Google ScholarGoogle Scholar
  14. I. C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. J. Cardoso, and J. S. Cardoso, “INbreast: Toward a Full-field Digital Mammographic Database.,” Acad. Radiol., vol. 19, no. 2, pp. 236–248, 2012, doi: 10.1016/j.acra.2011.09.014.Google ScholarGoogle ScholarCross RefCross Ref
  15. I. Singh, R. Bansal, A. Gupta, and A. Singh, “A hybrid grey wolf-whale optimization algorithm for optimizing SVM in breast cancer diagnosis,” PDGC 2020 - 2020 6th Int. Conf. Parallel, Distrib. Grid Comput., pp. 286–290, 2020, doi: 10.1109/PDGC50313.2020.9315816.Google ScholarGoogle ScholarCross RefCross Ref
  16. P. Stephan, T. Stephan, R. Kannan, and A. Abraham, “A hybrid artificial bee colony with whale optimization algorithm for improved breast cancer diagnosis,” Neural Comput. Appl., vol. 33, no. 20, pp. 13667–13691, 2021, doi: 10.1007/s00521-021-05997-6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Z. Nematzadeh, R. Ibrahim, and A. Selamat, “Comparative studies on breast cancer classifications with k-fold cross validations using machine learning techniques,” 2015 10th Asian Control Conf. Emerg. Control Tech. a Sustain. World, ASCC 2015, no. January, 2015, doi: 10.1109/ASCC.2015.7244654.Google ScholarGoogle ScholarCross RefCross Ref
  18. R. Alrais and N. Elfadil, “Support Vector Machine ( SVM ) for Medical Image Classification of Tumorous,” vol. 9, no. 6, pp. 37–45, 2020.Google ScholarGoogle Scholar
  19. R. J. Ramteke and K. M. Y, “Automatic Medical Image Classification and Abnormality Detection Using K- Nearest Neighbour,” Int. J. Adv. Comput. Res., vol. 2, no. 4, pp. 190–196, 2012.Google ScholarGoogle Scholar
  20. S. Kharya, S. Agrawal, and S. Soni, “Naive Bayes Classifiers: A Probabilistic Detection Model for Breast Cancer,” Int. J. Comput. Appl., vol. 92, no. 10, pp. 26–31, 2014, doi: 10.5120/16045-5206.Google ScholarGoogle Scholar
  21. I. Nedjar, M. E. H. Daho, N. Settouti, S. Mahmoudi, and M. A. Chikh, “Random forest based classification of medical x-ray images using a genetic algorithm for feature selection,” J. Mech. Med. Biol., vol. 15, no. 2, pp. 1–8, 2015, doi: 10.1142/S0219519415400254.Google ScholarGoogle ScholarCross RefCross Ref
  22. Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classification with convolutional neural network,” 2014 13th Int. Conf. Control Autom. Robot. Vision, ICARCV 2014, vol. 2014, no. December, pp. 844–848, 2014, doi: 10.1109/ICARCV.2014.7064414.Google ScholarGoogle ScholarCross RefCross Ref
  23. T. Guo, J. Dong, H. Li, and Y. Gao, “Simple convolutional neural network on image classification,” 2017 IEEE 2nd Int. Conf. Big Data Anal. ICBDA 2017, pp. 721–724, 2017, doi: 10.1109/ICBDA.2017.8078730.Google ScholarGoogle ScholarCross RefCross Ref
  24. J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” J. Electron. Sci. Technol., vol. 17, no. 1, pp. 26–40, 2019, doi: 10.11989/JEST.1674-862X.80904120.Google ScholarGoogle Scholar
  25. R. P. Snoek, Jasper and Larochelle, Hugo and Adams, “Practical bayesian optimization of machine learning algorithms,” Adv. Neural Inf. Process. Syst., vol. 25, 2012.Google ScholarGoogle Scholar
  26. H. Fang, H. Fan, S. Lin, Z. Qing, and F. R. Sheykhahmad, “Automatic breast cancer detection based on optimized neural network using whale optimization algorithm,” Int. J. Imaging Syst. Technol., vol. 31, no. 1, pp. 425–438, 2021, doi: 10.1002/ima.22468.Google ScholarGoogle ScholarCross RefCross Ref
  27. L. Chuan and F. Quanyuan, “The Standard Particle Swarm Optimization Algorithm Convergence Analysis and Parameter Selection,” in Third International Conference on Natural Computation (ICNC 2007), 2007, vol. 3, pp. 823–826. doi: 10.1109/ICNC.2007.746.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton, “The Compact Genetic Algorithm is Efficient Under Extreme Gaussian Noise,” IEEE Trans. Evol. Comput., vol. 21, no. 3, pp. 477–490, 2017, doi: 10.1109/TEVC.2016.2613739.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. Sánchez, P. Melin, and O. Castillo, “A grey Wolf optimizer for modular granular neural networks for human recognition,” Comput. Intell. Neurosci., vol. 2017, 2017, doi: 10.1155/2017/4180510.Google ScholarGoogle ScholarCross RefCross Ref
  30. D. Karaboga, “Artificial bee colony algorithm,” Scholarpedia, vol. 5, p. 6915, 2010, doi: 10.4249/scholarpedia.6915.Google ScholarGoogle ScholarCross RefCross Ref
  31. R. U, U. R. Acharya, H. Fujita, A. Gudigar, J. H. Tan, and S. C., “Application of Gabor Wavelet and Locality Sensitive Discriminant Analysis for Automated Identification of Breast Cancer Using Digitized Mammogram Images,” Appl. Soft Comput., vol. 46, 2016, doi: 10.1016/j.asoc.2016.04.036.Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICAAI '22: Proceedings of the 6th International Conference on Advances in Artificial Intelligence
    October 2022
    164 pages
    ISBN:9781450396943
    DOI:10.1145/3571560

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 12 January 2023

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)54
    • Downloads (Last 6 weeks)12

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format