skip to main content
research-article

Global Filter: Augmenting Images to Support Seeing the “Big Picture” for People with Local Interference

Published:10 June 2023Publication History
Skip Abstract Section

Abstract

Some neurodivergent people prioritize visual details over the “big picture”. While excellent attention to detail has many advantages, some contexts require the rapid integration of global and local information. A local processing style can be so strong that local details interfere with the fluid integration of global information required for processing of information rapidly displayed on user interfaces. This disconnect between context of an interaction and processing style can be termed local interference. Personalization of visual stimuli can promote a more accessible computing experience. We describe how technological interventions can support shifting of visual attention from local to global features to make them more accessible. We present two empirical studies. One study with one autistic adult revealed a significant shift in eye gaze fixation, and the other study with 20 autistic children revealed filters that visually emphasize primary aspects encouraged more global comments about the image content.

REFERENCES

  1. [1] Ahissar M. and Hochstein S.. 2004. The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences 8, 10 (Oct. 2004), 457464. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Almourad M. B. and Bataineh E.. 2020. Visual attention toward human face recognizing for autism spectrum disorder and normal developing children: An eye tracking study. In Proceedings of the 2020 6th International Conference on E-Business and Applications (New York, NY, USA, Feb. 2020), 99104.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. [3] Badcock D. R. et al. 2005. Interactions between luminance and contrast signals in global form detection. Vision Research 45, 7 (Mar. 2005), 881889. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Bar M.. 2004. Visual objects in context. Nature Reviews Neuroscience 5, 8 (Aug. 2004), 617629. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Baron-Cohen S. et al. 2009. Talent in autism: Hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1522 (May 2009), 13771383. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Baron-Cohen S. and Lombardo M. V.. 2017. Autism and talent: The cognitive and neural basis of systemizing. Dialogues in Clinical Neuroscience 19, 4 (Dec. 2017), 345353. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Becchio C. et al. 2010. Perception of shadows in children with autism spectrum disorders. PLOS ONE 5, 5 (May 2010), e10582. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Benavoli A. et al. Should We Really Use Post-Hoc Tests Based on Mean-Ranks? 10.Google ScholarGoogle Scholar
  9. [9] Bouvet L. et al. 2011. Global precedence effect in audition and vision: Evidence for similar cognitive styles across modalities. Acta Psychologica 138, 2 (Oct. 2011), 329335. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Boyd L. E. et al. 2017. Evaluating an iPad game to address overselectivity in preliterate AAC users with minimal verbal behavior. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (New York, NY, Oct. 2017), 240249.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Christie J. et al. 2012. Global versus local processing: seeing the left side of the forest and the right side of the trees. Frontiers in Human Neuroscience 6, (Feb. 2012). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Courchesne E. and Pierce K.. 2005. Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology 15, 2 (Apr. 2005), 225230. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Davidoff J. et al. 2008. Local and global processing: Observations from a remote culture. Cognition 108, 3 (Sep. 2008), 702709. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Dube W. V. and Wilkinson K. M.. 2014. The potential influence of “Stimulus Overselectivity” in AAC: Information from Eye-tracking and behavioral studies of attention. Augmentative and Alternative Communication (Baltimore, Md. : 1985) 30, 2 (Jun. 2014), 172185. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Eraslan S. et al. 2021. “Keep it simple!”: An eye-tracking study for exploring complexity and distinguishability of web pages for people with autism. Universal Access in the Information Society 20, 1 (Mar. 2021), 6984. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Eraslan S. et al. 2019. Web users with autism: Eye tracking evidence for differences. Behaviour & Information Technology 38, 7 (Jul. 2019), 678700. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Fink G. R. et al. 1997. Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. Brain 120, 10 (Oct. 1997), 17791791. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] de Fockert J. W. and Cooper A.. 2014. Higher levels of depression are associated with reduced global bias in visual processing. Cognition and Emotion 28, 3 (Apr. 2014), 541549. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Foster N. E. V. et al. 2016. Effects of age and attention on auditory global–local processing in children with autism spectrum disorder. Journal of Autism and Developmental Disorders 46, 4 (Apr. 2016), 14151428. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Foxton J. M. et al. 2003. Reading skills are related to global, but not local, acoustic pattern perception. Nature Neuroscience 6, (2003), 343344.Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Franceschini S. et al. 2017. A different vision of dyslexia: Local precedence on global perception. Scientific Reports 7, 1 (Dec. 2017), 17462. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Ganz J. B. et al. 2015. Impact of PECS tablet computer app on receptive identification of pictures given a verbal stimulus. Developmental Neurorehabilitation 18, 2 (Mar. 2015), 8287. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Gargaro B. A. et al. 2018. Attentional mechanisms in autism, ADHD, and Autism-ADHD using a local–global paradigm. Journal of Attention Disorders 22, 14 (Dec. 2018), 13201332. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Graham L.. 2008. Gestalt theory in interactive media design. Journal of Humanitites and Social Science 2, 1 (2008).Google ScholarGoogle Scholar
  25. [25] Great jobs for detail-oriented people. Retrieved from https://www.monster.com/career-advice/article/detail-oriented-jobs-0916 Accessed: 2022-05-05.Google ScholarGoogle Scholar
  26. [26] Gross T. F.. 2005. Global–Local precedence in the perception of facial age and emotional expression by children with autism and other developmental disabilities. Journal of Autism and Developmental Disorders 35, 6 (Nov. 2005), 773. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Guillon Q. et al. 2014. Visual social attention in autism spectrum disorder: Insights from eye tracking studies. Neuroscience & Biobehavioral Reviews 42, (May 2014), 279297. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Hübner R. and Volberg G.. 2005. The integration of object levels and their content: A theory of global/local processing and related hemispheric differences. Journal of Experimental Psychology: Human Perception and Performance 31, 3 (2005), 520541. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Hughes H. C. et al. 1996. Global precedence, spatial frequency channels, and the statistics of natural images. Journal of Cognitive Neuroscience 8, 3 (Jul. 1996), 197230. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [30] Hughes H. C. et al. 1990. Global versus local processing in the absence of low spatial frequencies. Journal of Cognitive Neuroscience 2, 3 (Jul. 1990), 272282. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. [31] Imbir K. K.. 2019. Does reading words differing in arousal load influence local vs. global scope of perception? Roczniki Psychologiczne 22, 3 (2019), 277297. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Jolliffe T. and Baron-Cohen S.. 2000. Linguistic processing in high-functioning adults with autism or Asperger's syndrome. Is global coherence impaired? Psychological Medicine 30, 5 (Sep. 2000), 11691187. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Kalay E. et al. 2020. Authentic leadership outcomes in detail-oriented occupations: Commitment, role-stress, and intentions to leave. Journal of Management & Organization 26, 5 (Sep. 2020), 832849. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Kaliukhovich D. A. et al. 2021. Visual preference for biological motion in children and adults with autism spectrum disorder: An eye-tracking study. Journal of Autism and Developmental Disorders 51, 7 (Jul. 2021), 23692380. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Katagiri M. et al. 2013. Individuals with asperger's disorder exhibit difficulty in switching attention from a local level to a global level. Journal of Autism and Developmental Disorders 43, 2 (Feb. 2013), 395403. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Kihara K. and Takeda Y.. 2019. The role of low-spatial frequency components in the processing of deceptive faces: A study using artificial face models. Frontiers in Psychology 10, (2019), 1468. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Klin A. et al. 2002. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry 59, 9 (Sep. 2002), 809816. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Koldewyn K. et al. 2013. Global/Local processing in autism: Not a disability, but a disinclination. Journal of Autism and Developmental Disorders 43, 10 (Oct. 2013), 23292340. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Light J. et al. 2019. Designing effective AAC displays for individuals with developmental or acquired disabilities: State of the science and future research directions. Augmentative and Alternative Communication, 35, 1 (2019), 4255.Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Lillie E. O. et al. 2011. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Personalized Medicine 8, 2 (Mar. 2011), 161173. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Lu Y. and Guo H.. 1999. Background removal in image indexing and retrieval. In Proceedings 10th International Conference on Image Analysis and Processing (Sep. 1999), 933938.Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Mack K. et al. 2021. What Do We Mean by “Accessibility Research”? A Literature Survey of Accessibility Papers in CHI and ASSETS from 1994 to 2019. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (New York, NY, May 2021), 118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Milne E. and Szczerbinski M.. 2009. Global and local perceptual style, field-independence, and central coherence: An attempt at concept validation. Advances in Cognitive Psychology 5, (Apr. 2009), 126. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Muth A. et al. 2014. Visuo-Spatial performance in autism: A meta-analysis. Journal of Autism and Developmental Disorders 44, 12 (Dec. 2014), 32453263. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] Navon D.. 1969. Forest before trees: The precedence of global features in visual perception. Perception and Psychophysics 5, (1969), 197200.Google ScholarGoogle Scholar
  46. [46] Navon D.. 1981. The forest revisited: More on global precedence. Psychological Research 43, 1 (Jul. 1981), 132. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Oliva A. and Schyns P. G.. 1997. Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology 34, 1 (Oct. 1997), 72107. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Oliva A. and Torralba A.. 2002. Scene-Centered description from spatial envelope properties. Biologically Motivated Computer Vision (Berlin, 2002), 263272.Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Papadopoulos K. S. and Goudiras D. B.. 2005. Accessibility assistance for visually-impaired people in digital texts. British Journal of Visual Impairment 23, 2 (May 2005), 7583. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Papagiannopoulou E. A. et al. 2014. A systematic review and meta-analysis of eye-tracking studies in children with autism spectrum disorders. Social Neuroscience 9, 6 (Nov. 2014), 610632. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Previc F. H.. 1990. Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behavioral and Brain Sciences 13, 3 (Sep. 1990), 519542. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Rance G. et al. 2014. The use of listening devices to ameliorate auditory deficit in children with autism. The Journal of Pediatrics 164, 2 (Feb. 2014), 352357. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Rello L. and Baeza-Yates R.. 2016. The effect of font type on screen readability by people with dyslexia. ACM Transactions on Accessible Computing 8, 4 (May 2016), 133. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. [54] Rello L. and Bigham J. P.. 2017. Good background colors for readers: A study of people with and without dyslexia. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (New York, NY, 2017), 7280.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. [55] Rinehart N. J. et al. 2000. Atypical interference of local detail on global processing in high- functioning autism and asperger's disorder. The Journal of Child Psychology and Psychiatry and Allied Disciplines 41, 6 (Sep. 2000), 769778.Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Robertson C. E. and Baron-Cohen S.. 2017. Sensory perception in autism. Nature Reviews Neuroscience 18, 11 (Nov. 2017), 671684. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  57. [57] Rubinsten O. and Henik A.. 2006. Double dissociation of functions in developmental dyslexia and dyscalculia. Journal of Educational Psychology 98, 4 (2006), 854867. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Shah A. and Frith U.. 1983. An islet of ability in autistic children: A research note. Journal of Child Psychology and Psychiatry 24, 4 (1983), 613620. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  59. [59] Sheskin D. J.. 2003. Handbook of Parametric and Nonparametric Statistical Procedures: Third Edition Chapman and Hall/CRC.Google ScholarGoogle ScholarCross RefCross Ref
  60. [60] Smith D. et al. 2015. Visual integration in autism. Frontiers in Human Neuroscience 9, (2015).Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Song Y. and Hakoda Y.. 2015. Lack of global precedence and global-to-local interference without local processing deficit: A robust finding in children with attention-deficit/hyperactivity disorder under different visual angles of the Navon task. Neuropsychology 29, 6 (2015), 888894. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Soroor G. et al. 2021. Priming global processing strategy improves the perceptual performance of children with autism spectrum disorders. Journal of Autism and Developmental Disorders (Apr. 2021). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Stevenson R. A. et al. 2018. Seeing the forest and the trees: Default local processing in individuals with high autistic traits does not come at the expense of global attention. Journal of Autism and Developmental Disorders 48, 4 (Apr. 2018), 13821396. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  64. [64] Taylor S. E.. 1991. Asymmetrical effects of positive and negative events: The mobilization-minimization hypothesis. Psychological Bulletin 110, 1 (1991), 6785. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  65. [65] Van der Hallen R. et al. 2015. Global processing takes time: A meta-analysis on local–global visual processing in ASD. Psychological Bulletin 141, 3 (2015), 549.Google ScholarGoogle ScholarCross RefCross Ref
  66. [66] Wang S. et al. 2015. Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron 88, 3 (Nov. 2015), 604616. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] WANG X.. 2017. BEING SOCIAL IN ISOCIAL: A Case Study of Youth with Autism Spectrum Disorder Learning Social Competence in 3D Collaborative Virtual Learning Environment American Academic Press.Google ScholarGoogle Scholar
  68. [68] Xu J. et al. 2014. Predicting human gaze beyond pixels. Journal of Vision 14, 1 (Jan. 2014), 2828. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] Yaneva V. et al. 2015. Accessible texts for autism: An eye-tracking study. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility - ASSETS ’15 (Lisbon, Portugal, 2015), 4957.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. [70] Yanulevskaya V. et al. 2013. A proto-object-based computational model for visual saliency. Journal of Vision 13, 13 (Nov. 2013), 27. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  71. [71] Yovel I. et al. 2005. Who sees trees before forest?: The obsessive-compulsive style of visual attention. Psychological Science 16, 2 (Feb. 2005), 123129. DOI:Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Global Filter: Augmenting Images to Support Seeing the “Big Picture” for People with Local Interference

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Computer-Human Interaction
      ACM Transactions on Computer-Human Interaction  Volume 30, Issue 3
      June 2023
      544 pages
      ISSN:1073-0516
      EISSN:1557-7325
      DOI:10.1145/3604411
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 June 2023
      • Online AM: 2 December 2022
      • Accepted: 21 October 2022
      • Revised: 17 May 2022
      • Received: 6 June 2021
      Published in tochi Volume 30, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text