skip to main content
10.1145/3573428.3573523acmotherconferencesArticle/Chapter ViewAbstractPublication PageseitceConference Proceedingsconference-collections
research-article

A Review of Using MFC Actuators for Vibration Control of Beam and Plate Structures

Published:15 March 2023Publication History

ABSTRACT

In order to achieve high-precision vibration control of beam and plate structures, the actuators need to be selected and installed according to the controlled structures. MFC (Macro Fiber Composite) is a thin slice piezoelectric composite material with large displacement output and fast response, which can be sticked or embedded in structures easily, so the research on vibration control of beam and plate structures using MFC actuators is still very active. This article introduces the theoretical basis of MFC firstly, and where includes the classification of MFC, internal structure, constitutive equations and common modeling methods. Then, introducing the applications in vibration control of beam and plate structures using MFC actuators and the controlling strategy used to solve the nonlinear problems in these applications. Finally, extends the applications of MFC actuators in complex structures, and the problems of nonlinear hysteresis behavior are summarized which existing in vibration control using MFC. For higher precision control of MFC, this feature can be researched in depth.

References

  1. K. L. Acosta, W. K. Wilkie, D. J. Inman. 2021. Energy generated through the pyroelectric effect using Macro-fiber Composites. Journal of Intelligent Material Systems and Structures, 32(2), 240-250.Google ScholarGoogle ScholarCross RefCross Ref
  2. G. Zhang, C. Klumpner, Y.-J. Lin. 2019. Energy harvesting utilizing reciprocating flow-induced torsional vibration on a T-shaped cantilever beam. Smart Materials and Structures, 28(2).Google ScholarGoogle Scholar
  3. Z. Machu, M. Kratochvilova, F. Ksica, J. Podrouzek, Z. Hadas. 2021. SENSING RAIL SYSTEM WITH PIEZOELECTRIC ELEMENTS. Mm Science Journal, 2021, 4230-4237.Google ScholarGoogle ScholarCross RefCross Ref
  4. J. Boddapati, S. Mohanty, R. K. Annabattula. 2020. An analytical model for shape morphing through combined bending and twisting in piezo composites. Mechanics of Materials, 144.Google ScholarGoogle Scholar
  5. J. Lou, Y. Yang, C. Wu, G. Li, T. Chen, J. Ma. 2020. Underwater oscillation performance and 3D vortex distribution generated by miniature caudal fin-like propulsion with macro fiber composite actuation. Sensors and Actuators a-Physical, 303.Google ScholarGoogle Scholar
  6. J. Dong, C. Liu, Q. Chen, Z. Xu, W. Chen, Y. Wu, 2020. Design and experimental research of piezoelectric pump based on macro fiber composite. Sensors and Actuators a-Physical, 312.Google ScholarGoogle Scholar
  7. P. R. Thomas, A. C. B. Calzada, K. Gilmour. 2020. Modeling of macro fiber composite actuated laminate plates and aerofoils. Journal of Intelligent Material Systems and Structures, 31(4), 525-549.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Gohari, S. Sharifi, R. Abadi, M. Izadifar, C. Burvill, Z. Vrcelj. 2018. A quadratic piezoelectric multi-layer shell element for FE analysis of smart laminated composite plates induced by MFC actuators. Smart Materials and Structures, 27(9).Google ScholarGoogle Scholar
  9. D. S. Ibrahim, S. Beibei, S. Fatai, O. A. Oluseyi, U. Sharif. 2021. Numerical and experimental study of a gauge-shaped beam for improved performance of piezoelectric energy harvester. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 27(12), 4253-4268.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Zhang, J. Tu, Z. Li, K. Gao, H. Xie. 2019. Modeling on Actuation Behavior of Macro-Fiber Composite Laminated Structures Based on Sinusoidal Shear Deformation Theory. Applied Sciences-Basel, 9(14).Google ScholarGoogle Scholar
  11. M. Mallouli, M. Chouchane. 2020. Piezoelectric energy harvesting using macro fiber composite patches. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(21), 4331-4349.Google ScholarGoogle ScholarCross RefCross Ref
  12. O. Bilgen, M. I. Friswell, D. J. Inman. 2011. Theoretical and Experimental Analysis of Hysteresis in Piezocomposite Airfoils Using Preisach Model. Journal of Aircraft, 48(6), 1935-1947.Google ScholarGoogle ScholarCross RefCross Ref
  13. W. Wang, R. Wang, Z. Chen, Z. Sang, K. Lu, F. Han, 2020. A new hysteresis modeling and optimization for piezoelectric actuators based on asymmetric Prandtl-Ishlinskii model. Sensors and Actuators A: Physical, 316.Google ScholarGoogle Scholar
  14. Y.-l. Yang, Y.-d. Wei, J.-q. Lou, L. Fu, G. Tian, M. Wu. 2016. Hysteresis modeling and precision trajectory control for a new MFC micromanipulator. Sensors and Actuators A: Physical, 247, 37-52.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Mukherjee, S. F. Ali, A. Arockiarajan. 2019. Compliant structure under follower forces and any combined loading: Theoretical and experimental studies. International Journal of Mechanical Sciences, 153-154, 75-82.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Gawryluk, A. Mitura, A. Teter. 2019. Dynamic response of a composite beam rotating at constant speed caused by harmonic excitation with MFC actuator. Composite Structures, 210, 657-662.Google ScholarGoogle ScholarCross RefCross Ref
  17. E. Padoin, I. F. Santos, E. A. Perondi, O. Menuzzi, J. F. Goncalves. 2019. Topology optimization of piezoelectric macro-fiber composite patches on laminated plates for vibration suppression. Structural and Multidisciplinary Optimization, 59(3), 941-957.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. X. Xue, X. Wu, L. Chen, Q. Sun, X. Maldague, T. Takagi. 2014. Bouc-Wen modeling to hysteresis nonlinear in Macro Fiber Composite (MFC) actuator. International Journal of Applied Electromagnetics and Mechanics, 45(1-4), 965-971.Google ScholarGoogle ScholarCross RefCross Ref
  19. Y.-l. Yang, J.-q. Lou, G.-h. Wu, Y.-d. Wei, L. Fu. 2018. Design and position/force control of an S-shaped MFC microgripper. Sensors and Actuators a-Physical, 282, 63-78.Google ScholarGoogle Scholar
  20. R. Rimasauskiene, V. Jurenas, M. Radzienski, M. Rimasauskas, W. Ostachowicz. 2019. Experimental analysis of active-passive vibration control on thin-walled composite beam. Composite Structures, 223.Google ScholarGoogle Scholar
  21. J. Gawryluk, A. Mitura, A. Teter. 2020. Dynamic control of kinematically excited laminated, thin-walled beam using macro fibre composite actuator. Composite Structures, 236.Google ScholarGoogle Scholar
  22. Z. Miao, Z. Gao, X. Zhu, H. Zhang. 2020. Multiple model hybrid adaptive vibration control for flexible cantilever beam with varying load. SCIENTIA SINICA Informationis, 50(5), 734-742.Google ScholarGoogle ScholarCross RefCross Ref
  23. G. Zhiyuan, W. Yiru, S. Muyao, Z. Xiaojin. 2022. Theoretical and experimental investigation study of discrete time rate‑dependent hysteresis modeling and adaptive vibration control for smart flexible beam with MFC actuators. Sensors and Actuators A: Physical, 344.Google ScholarGoogle Scholar
  24. T. Mulla, J.-H. Kim, S.-B. Choi. 2020. Modal characteristics of a cantilever beam with the free-end immersed in a magnetorheological fluid. Smart Materials and Structures, 29(8).Google ScholarGoogle Scholar
  25. J. Lou, T. Chen, Y. Yang, C. Xu, H. Chen, J. Ma, 2022. Electricity-structure-fluid coupled modelling and experiment of underwater flexible structure with partially distributed macro fiber composites. Journal of Vibration and Control, 28(3-4), 290-303.Google ScholarGoogle ScholarCross RefCross Ref
  26. P. Rosenzweig, A. Kater, T. Meurer. 2018. Model predictive control of piezo-actuated structures using reduced order models. Control Engineering Practice, 80, 83-93.Google ScholarGoogle ScholarCross RefCross Ref
  27. A. Kater, T. Meurer. 2019. Motion planning and tracking control for coupled flexible beam structures. Control Engineering Practice, 84, 389-398.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Ascione, M. Gherlone, A. C. Orifici. 2022. Nonlinear static analysis of composite beams with piezoelectric actuator patches using the Refined Zigzag Theory. Composite Structures, 282.Google ScholarGoogle Scholar
  29. J. Lou, Y. Yang, T. Chen, X. Ren, Z. Jia. 2020. Oscillating performance and propulsion mechanism of biomimetic underwater oscillatory propulsion by resonant actuation of macro fiber composites. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 234(8), 1660-1672.Google ScholarGoogle ScholarCross RefCross Ref
  30. L. Marinangeli, F. Alijani, S. H. HosseinNia. 2018. Fractional-order positive position feedback compensator for active vibration control of a smart composite plate. Journal of Sound and Vibration, 412, 1-16.Google ScholarGoogle ScholarCross RefCross Ref
  31. A. J. Lee, D. J. Inman. 2019. Electromechanical modelling of a bistable plate with Macro Fiber Composites under nonlinear vibrations. Journal of Sound and Vibration, 446, 326-342.Google ScholarGoogle ScholarCross RefCross Ref
  32. H. S. Bauomy, A. T. El-Sayed. 2020. Act of nonlinear proportional derivative controller for MFC laminated shell. Physica Scripta, 95(9).Google ScholarGoogle Scholar
  33. X. Wang, W. Zhou, Z. Zhang, J. Jiang, Z. Wu. 2021. Theoretical and experimental investigations on modified LQ terminal control scheme of piezo-actuated compliant structures in finite time. Journal of Sound and Vibration, 491.Google ScholarGoogle ScholarCross RefCross Ref
  34. J.-q. Chen, Y.-x. Hao, W. Zhang, Ieee. 2021. STATIC AND SNAP-THROUGH BEHAVIORS OF TRAPEZOIDAL BI-STABLE LAMINATES. Paper presented at the 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), Henan Polytechn Univ, Zhengzhou, PEOPLES R CHINA.Google ScholarGoogle Scholar
  35. X. Sun, Q. Dai, O. Bilgen. 2018. Design and simulation of Macro-Fiber composite based serrated microflap for wind turbine blade fatigue load reduction. Materials Research Express, 5(5).Google ScholarGoogle Scholar
  36. G. Ma, M. Xu, J. Tian, X. Kan. 2021. The vibration suppression of solar panel based on smart structure. Aeronautical Journal, 125(1283), 244-255.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Review of Using MFC Actuators for Vibration Control of Beam and Plate Structures

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      EITCE '22: Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering
      October 2022
      1999 pages
      ISBN:9781450397148
      DOI:10.1145/3573428

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 15 March 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate508of972submissions,52%
    • Article Metrics

      • Downloads (Last 12 months)56
      • Downloads (Last 6 weeks)4

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format