skip to main content
10.1145/3573428.3573695acmotherconferencesArticle/Chapter ViewAbstractPublication PageseitceConference Proceedingsconference-collections
research-article

Image Restoration Using Multi-Stage Progressive Encoder-Decoder Network With Attention and Transfer Learning (MSP-ATL)

Authors Info & Claims
Published:15 March 2023Publication History

ABSTRACT

Convolutional neural network (CNN) is widely used in the field of image restoration, however, most existing CNN based image restoration methods only focus on a part of image restoration without considering the relationship between image deblurring, image de-raining and image denoising. In addition, training a neural network model for different image restoration tasks requires a large amount of training data, plenty of hardware overheads and a great deal of time. In order to reduce resource consumption and improve the generality of the model, this paper proposes an image restoration algorithm using multistage progressive encoder-decoder network with attention and transfer learning (MSP-ATL). First of all, we design a multi-stage progressive encoder-decoder network with attention mechanisms, which does not require down-sampling or fragmentation of the input, and can retain the overall information of the image. Secondly, following the idea of coarse-to-fine which is widely used in the field of image restoration, we propose a multistage progressive loss function to recover images from coarse to fine by cooperating with the multi-stage network structure. Finally, using transfer learning, the obtained deblurring model can be transferred to image de-raining and image denoising tasks with less training data and simple training process. Extensive experimental results on commonly used datasets demonstrate the efficiency and effectiveness of the proposed method.

References

  1. Sun, J., Cao, W., Xu, Z., & Ponce, J. , 2015. Learning a convolutional neural network for non-uniform motion blur removal. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 769-777). DOI: https://doi.org/10.1109/CVPR.2015.7298677Google ScholarGoogle ScholarCross RefCross Ref
  2. Nah, S., Hyun Kim, T., & Mu Lee, K. , 2017. Deep multi-scale convolutional neural network for dynamic scene deblurring. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3883-3891). DOI: https://doi.org/10.1109/CVPR.2017.35Google ScholarGoogle ScholarCross RefCross Ref
  3. Tao, X., Gao, H., Shen, X., Wang, J., & Jia, J. , 2018. Scale-recurrent network for deep image deblurring. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8174-8182). DOI: https://doi.org/10.1109/CVPR.2018.00853Google ScholarGoogle ScholarCross RefCross Ref
  4. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., & Matas, J. , 2018. Deblurgan: Blind motion deblurring using conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8183-8192). DOI: https://doi.org/10.1109/CVPR.2018.00854Google ScholarGoogle ScholarCross RefCross Ref
  5. Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. , 2019. Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 8878-8887). DOI: https://doi.org/10.1109/ICCV.2019.00897Google ScholarGoogle ScholarCross RefCross Ref
  6. Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., & Li, H. , 2020. Deblurring by realistic blurring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2737-2746). DOI: https://doi.org/10.1109/CVPR42600.2020.00281Google ScholarGoogle ScholarCross RefCross Ref
  7. Zheng, X., Liao, Y., Guo, W., Fu, X., & Ding, X. , 2013, November). Single-image-based rain and snow removal using multi-guided filter. In International conference on neural information processing (pp. 258-265). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-42051-1_33Google ScholarGoogle ScholarCross RefCross Ref
  8. Yang, W., Tan, R. T., Feng, J., Liu, J., Guo, Z., & Yan, S. , 2017. Deep joint rain detection and removal from a single image. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1357-1366). DOI: https://doi.org/10.1109/CVPR.2017.183Google ScholarGoogle ScholarCross RefCross Ref
  9. Zhang, H., Sindagi, V., & Patel, V. M. , 2019. Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology, 30(11), 3943-3956. DOI: https://doi.org/ 10.1109/TCSVT.2019.2920407Google ScholarGoogle Scholar
  10. Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., & Paisley, J. , 2017. Removing rain from single images via a deep detail network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3855-3863). DOI: https://doi.org/10.1109/CVPR.2017.186Google ScholarGoogle ScholarCross RefCross Ref
  11. Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. , 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on image processing, 16(8), 2080-2095. DOI: https://doi.org/ 10.1109/TIP.2007.901238Google ScholarGoogle ScholarCross RefCross Ref
  12. Dong, W., Zhang, L., Shi, G., & Li, X. , 2012. Nonlocally centralized sparse representation for image restoration. IEEE transactions on Image Processing, 22(4), 1620-1630. DOI: https://doi.org/10.1109/TIP.2012.2235847Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gu, S., Zhang, L., Zuo, W., & Feng, X. , 2014. Weighted nuclear norm minimization with application to image denoising. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2862-2869). DOI: https://doi.org/10.1109/CVPR.2014.366Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Xu, J., Zhang, L., Zhang, D., & Feng, X. , 2017. Multi-channel weighted nuclear norm minimization for real color image denoising. In Proceedings of the IEEE international conference on computer vision (pp. 1096-1104). DOI: https://doi.org/10.1109/ICCV.2017.125Google ScholarGoogle ScholarCross RefCross Ref
  15. Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. , 2017. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7), 3142-3155. DOI: https://doi.org/10.1109/TIP.2017.2662206Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. He, K., Zhang, X., Ren, S., & Sun, J. , 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). DOI: https://doi.org/10.1109/CVPR.2016.90Google ScholarGoogle ScholarCross RefCross Ref
  17. Yu, F., & Koltun, V. , 2015. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122. DOI: https://doi.org/10.48550/arXiv.1511.07122Google ScholarGoogle Scholar
  18. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. , 2017. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). DOI: https://doi.org/10.1109/CVPR.2017.243Google ScholarGoogle ScholarCross RefCross Ref
  19. Mao, X., Shen, C., & Yang, Y. B. , 2016. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. Advances in neural information processing systems, 29. DOI: https://doi.org/10.48550/arXiv.1603.09056Google ScholarGoogle Scholar
  20. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. , 2020. Generative adversarial networks. Communications of the ACM, 63(11), 139-144. DOI: https://doi.org/10.1145/3422622Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., Yang, M. H., & Shao, L. , 2021. Multi-stage progressive image restoration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14821-14831). DOI: https://doi.org/10.1109/CVPR46437.2021.01458Google ScholarGoogle ScholarCross RefCross Ref
  22. Zhang, H., Dai, Y., Li, H., & Koniusz, P. , 2019. Deep stacked hierarchical multi-patch network for image deblurring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5978-5986). DOI: https://doi.org/10.1109/CVPR.2019.00613Google ScholarGoogle ScholarCross RefCross Ref
  23. Geraci, A. , 1991. IEEE standard computer dictionary: Compilation of IEEE standard computer glossaries. IEEE Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Huang, D. A., Kang, L. W., Yang, M. C., Lin, C. W., & Wang, Y. C. F. , 2012, July Context-aware single image rain removal. In 2012 IEEE International Conference on Multimedia and Expo (pp. 164-169). IEEE. DOI: https://doi.org/10.1109/ICME.2012.92Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. , 2018. Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV) (pp. 3-19). DOI: https://doi.org/10.1007/978-3-030-01234-2_1Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. , 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. DOI: https://doi.org/10.48550/arXiv.1406.1078Google ScholarGoogle Scholar
  27. Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. , 2021. An attentive survey of attention models. ACM Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32. DOI: https://doi.org/10.1145/3465055Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zagoruyko, S., & Komodakis, N. , 2016. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928. DOI: https://doi.org/10.48550/arXiv.1612.03928Google ScholarGoogle Scholar
  29. Wang, Y. Q. , 2014, October. A multilayer neural network for image demosaicking. In 2014 IEEE International Conference on Image Processing (ICIP) (pp. 1852-1856). IEEE. DOI: https://doi.org/ 10.1109/ICIP.2014.7025371Google ScholarGoogle Scholar
  30. Wen, Y., Chen, J., Sheng, B., Chen, Z., Li, P., Tan, P., & Lee, T. Y. , 2021. Structure-aware motion deblurring using multi-adversarial optimized cyclegan. IEEE Transactions on Image Processing, 30, 6142-6155. DOI: https://doi.org/10.1109/TIP.2021.3092814Google ScholarGoogle ScholarCross RefCross Ref
  31. Xu, L., Zheng, S., & Jia, J. , 2013. Unnatural l0 sparse representation for natural image deblurring. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1107-1114). DOI: https://doi.org/10.1109/CVPR.2013.147Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Hyun Kim, T., Ahn, B., & Mu Lee, K. , 2013. Dynamic scene deblurring. In Proceedings of the IEEE international conference on computer vision (pp. 3160-3167). DOI: https://doi.org/10.1109/ICCV.2013.392Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Whyte, O., Sivic, J., Zisserman, A., & Ponce, J. , 2012. Non-uniform deblurring for shaken images. International journal of computer vision, 98(2), 168-186. DOI: https://doi.org/10.1007/s11263-011-0502-7Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I., Shen, C., ... & Shi, Q. , 2017. From motion blur to motion flow: A deep learning solution for removing heterogeneous motion blur. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2319-2328). DOI: https://doi.org/10.1109/CVPR.2017.405Google ScholarGoogle ScholarCross RefCross Ref
  35. Zhang, J., Pan, J., Ren, J., Song, Y., Bao, L., Lau, R. W., & Yang, M. H. , 2018. Dynamic scene deblurring using spatially variant recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2521-2529). DOI: https://doi.org/10.1109/CVPR.2018.00267Google ScholarGoogle ScholarCross RefCross Ref
  36. Shen, Z., Wang, W., Lu, X., Shen, J., Ling, H., Xu, T., & Shao, L. , 2019. Human-aware motion deblurring. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 5572-5581). DOI: https://doi.org/10.1109/ICCV.2019.00567Google ScholarGoogle ScholarCross RefCross Ref
  37. Gao, H., Tao, X., Shen, X., & Jia, J. , 2019. Dynamic scene deblurring with parameter selective sharing and nested skip connections. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3848-3856). DOI: https://doi.org/10.1109/CVPR.2019.00397Google ScholarGoogle ScholarCross RefCross Ref
  38. Park, D., Kang, D. U., Kim, J., & Chun, S. Y. , 2020, August. Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training. In European Conference on Computer Vision (pp. 327-343). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-58539-6_20Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Li, Y., Tan, R. T., Guo, X., Lu, J., & Brown, M. S. , 2016. Rain streak removal using layer priors. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2736-2744). DOI: https://doi.org/ 10.1109/CVPR.2016.299Google ScholarGoogle ScholarCross RefCross Ref
  40. Zhang, H., & Patel, V. M. , 2018. Density-aware single image de-raining using a multi-stream dense network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 695-704). DOI: https://doi.org/ 10.1109/CVPR.2018.00079Google ScholarGoogle ScholarCross RefCross Ref
  41. Fu, X., Huang, J., Ding, X., Liao, Y., & Paisley, J. , 2017. Clearing the skies: A deep network architecture for single-image rain removal. IEEE Transactions on Image Processing, 26(6), 2944-2956. DOI: https://doi.org/ 10.1109/TIP.2017.2691802Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wei, W., Meng, D., Zhao, Q., Xu, Z., & Wu, Y. , 2019. Semi-supervised transfer learning for image rain removal. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3877-3886). DOI: https://doi.org/10.1109/CVPR.2019.00400Google ScholarGoogle ScholarCross RefCross Ref
  43. Yasarla, R., & Patel, V. M. , 2019. Uncertainty guided multi-scale residual learning-using a cycle spinning cnn for single image de-raining. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8405-8414). DOI: https://doi.org/10.1109/CVPR.2019.00860Google ScholarGoogle ScholarCross RefCross Ref
  44. Li, X., Wu, J., Lin, Z., Liu, H., & Zha, H. , 2018. Recurrent squeeze-and-excitation context aggregation net for single image deraining. In Proceedings of the European conference on computer vision (ECCV) (pp. 254-269). DOI: https://doi.org/10.1007/978-3-030-01234-2_16Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Ren, D., Zuo, W., Hu, Q., Zhu, P., & Meng, D. , 2019. Progressive image deraining networks: A better and simpler baseline. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3937-3946). DOI: https://doi.org/10.1109/CVPR.2019.00406Google ScholarGoogle ScholarCross RefCross Ref
  46. Jiang, K., Wang, Z., Yi, P., Chen, C., Huang, B., Luo, Y., ... & Jiang, J. , 2020. Multi-scale progressive fusion network for single image deraining. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp.8346-8355). DOI: https://doi.org/10.1109/CVPR42600.2020.00837Google ScholarGoogle ScholarCross RefCross Ref
  47. Abdelhamed, A., Lin, S., & Brown, M. S. , 2018. A high-quality denoising dataset for smartphone cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1692-1700). DOI: https://doi.org/10.1109/CVPR.2018.00182Google ScholarGoogle ScholarCross RefCross Ref
  48. Burger, H. C., Schuler, C. J., & Harmeling, S. , 2012, June. Image denoising: Can plain neural networks compete with BM3D?. In 2012 IEEE conference on computer vision and pattern recognition (pp. 2392-2399). IEEE. DOI: https://doi.org/10.1109/CVPR.2012.6247952Google ScholarGoogle ScholarCross RefCross Ref
  49. Guo, S., Yan, Z., Zhang, K., Zuo, W., & Zhang, L. , 2019. Toward convolutional blind denoising of real photographs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1712-1722). DOI: https://doi.org/10.1109/CVPR.2019.00181Google ScholarGoogle ScholarCross RefCross Ref
  50. Roth, S., & Black, M. J. , 2009. Fields of experts. International Journal of Computer Vision, 82(2), 205-229. DOI: https://doi.org/10.1007/s11263-008-0197-6Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Lebrun, M., Colom, M., & Morel, J. M. , 2015. The noise clinic: a blind image denoising algorithm. Image Processing On Line, 5, 1-54. DOI: https://doi.org/10.5201/ipol.2015.125Google ScholarGoogle ScholarCross RefCross Ref
  52. Aharon, M., Elad, M., & Bruckstein, A. , 2006. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on signal processing, 54(11), 4311-4322. DOI: https://doi.org/ 10.1109/TSP.2006.881199Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Image Restoration Using Multi-Stage Progressive Encoder-Decoder Network With Attention and Transfer Learning (MSP-ATL)

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      EITCE '22: Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering
      October 2022
      1999 pages
      ISBN:9781450397148
      DOI:10.1145/3573428

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 15 March 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate508of972submissions,52%
    • Article Metrics

      • Downloads (Last 12 months)36
      • Downloads (Last 6 weeks)7

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format