skip to main content
10.1145/3573942.3574048acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaiprConference Proceedingsconference-collections
research-article

A Review of U-Net Network Medical Image Segmentation Applications

Published: 16 May 2023 Publication History

Abstract

This paper provides a comprehensive review of U-Net networks. It describes the basic structure and working principle of convolutional neural networks and U-Net networks, summarizes the improvement of U-Net network model; summarizes the improvement of U-Net network structure in terms of convolutional operation, pooling operation, fully connected layer and output layer; and outlooks the future development direction of U-Net networks.

References

[1]
Aitken A, Ledig C, Theis L, Caballero J, Wang Z and Shi W Z. 2017. Checkerboard artifact free sub-pixel convolution: a note on sub-pixel convolution, resize convolution and convolution resize [ EB / OL]. [2020-11-15]. https: / / arxiv. org / pdf / 1707. 02937. pdf
[2]
Alom Z, Yakopcic C, Taha T M and Asari V K. 2018. Nuclei segmentation with recurrent residual convolutional neural networks based U-Net ( R2U-Net ) / / Proceedings of the NAECON 2018-IEEE National Aerospace and Electronics Conference. Dayton, USA: IEEE: 228-233 [ 1109 / NAECON. 2018. 8556686] Martin A. Fischler and Robert C. Bolles. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 6 (June 1981), 381–395. https://doi.org/10.1145/358669.358692
[3]
Arjovsky M, Chintala S and Bottou L. 2017. Wasserstein GAN [ EB / OL]. [2020-11-15]. http: / / arxiv. org / pdf / 1701. 07875. pdf Jon M.
[4]
Ba J L, Kiros J R and Hinton G E. 2016. Layer normalization [ EB / OL]. [2020-11-15]. https: / / xueshu. baidu. com / s? wd = paperuri% 3A% 28bce50fa3f4f88216264baf4ff6c26f5 d% 29&filter = sc _ long_sign&tn = SE_xueshusource_2kduw22v&sc_vurl = http% 3A% 2F% 2Farxiv. org% 2Fabs% 2F1607. 06450&ie = utf-8&sc _ us = 3874236310593320015 Berkley, CA, Article 7, 9 pages.
[5]
Basirat M and Roth P M. 2018. The quest for the golden activation function [EB / OL]. [2020-11-5]. https: / / arxiv. org / pdf / 1808. 00783. pdf David Harel. 1979. First-Order Dynamic Logic. Lecture Notes in Computer Science, Vol. 68. Springer-Verlag, New York, NY. https://doi.org/10.1007/3-540-09237-4
[6]
Jason Jerald. 2015. The VR Book: Human-Centered Design for Virtual Reality. Association for Computing Machinery and Morgan & Claypool.
[7]
Byra M, Jarosik P, Szubert A, Galperin M, Ojeda-Fournier H, Olson L, O'Boyle M, Comstock C and Andre M. 2020. Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomedical Signal Processing and Control, 61: #102027 [ 1016 / j. bspc. 2020. 102027]
[8]
Chen H, Dou Q, Yu L Q, Qin J and Heng P A. 2018. VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage, 170: 446- 455 [ 1016 / j. neuroimage. 2017. 04. 041] Brian K. Reid. 1980. A high-level approach to computer document formatting. In Proceedings of the 7th Annual Symposium on Principles of Programming Languages. ACM, New York, 24–31. https://doi.org/10.1145/567446.567449
[9]
John R. Smith and Shih-Fu Chang. 1997. VisualSEEk: a fully automated content-based image query system. In Proceedings of the fourth ACM international conference on Multimedia (MULTIMEDIA ’96). Association for Computing Machinery, New York, NY, USA, 87–98. https://doi.org/10.1145/244130.244151
[10]
Chen L C, Papandreou G, Schroff F and Adam H. 2017. Rethinking atrous convolution for semantic image segmentation [ EB / OL ]. [2020-11-15]. https: / / arxiv. org / pdf / 1706. 05587. pdf
[11]
Dou Q, Yu L Q, Chen H, Jin Y M, Yang X, Qin J and Heng P A. 2017. 3D deeply supervised network for automated segmentation of volumetric medical images. Medical Image Analysis, 41: 40-54 [ 1016 / j. media. 2017. 05. 001]
[12]
Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. 2014. Generative adversarial nets / / Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press: 2670-2680Sarah Cohen, Werner Nutt, and Yehoshua Sagic. 2007. Deciding equivalences among conjunctive aggregate queries. J. ACM 54, 2, Article 5 (April 2007), 50 pages.
[13]
Hariyani Y S, Eom H and Park C. 2020. DA-Capnet: dual attention deep learning based on U-Net for nailfold capillary segmentation. IEEE Access, 8: 10543-10553 [ 1109 / ACCESS. 2020. 2965651]
[14]
He K M, Zhang X Y, Ren S Q and Sun J. 2015a. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification / / Proceedings of 2015 IEEE International Conference on Computer Vision ( ICCV). Santiago, Chile: IEEE: 1026-1034 [ 1109 / ICCV. 2015. 123]
[15]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition / / Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). Las Vegas, USA: IEEE: 770-778 [ 1109 / CVPR. 2016. 90]
[16]
Hu J F, Wang H, Gao S B, Bao M K, Liu T, Wang Y X and Zhang J C. 2019. S-UNet: a bridge-style u-net framework with a saliency mechanism for retinal vessel segmentation. IEEE Access, 7: 174167-174177 [ 1109 / ACCESS. 2019. 2940476]
[17]
Hu K, Liu C, Yu X, Zhang J, He Y and Zhu H C. 2018. A 2. 5D cancer segmentation for MRI images based on U-Net / / Proceedings of the 5th International Conference on Information Science and Control Engineering ( ICISCE ). Zhengzhou, China: IEEE: 6-10 [ 1109 / ICISCE. 2018. 00011]
[18]
Huang G, Liu Z, Van Der Maaten L and Weinberger K Q. 2017. Densely connected convolutional networks / / Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 2261-2269 [ 1109 / CVPR. 2017. 243]
[19]
Jin Q, Meng Z, Sun C, Cui H and Su R. 2020. RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans. Frontiers in Bioengineering and Biotechnology, 8: # 605132 [ 3389 / fbios. 2020. 605132]
[20]
Khanna A, Londhe N D, Gupta S and Semwal A. 2020. A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images. Biocybernetics and Biomedical Engineering, 40(3) : 1314-1327 [ 1016 / j. bbe. 2020. 07. 007]
[21]
Kim J H, Lee H, Hong S J, Kim S, Park J, Hwang J Y and Choi J P. 2019. Objects segmentation from high-resolution aerial images using U-Net with pyramid pooling layers. IEEE Geoscience and Remote Sensing Letters, 16 ( 1 ) : 115-119 [ 1109 / LGRS. 2018. 2868880]
[22]
Kuang Z, Deng X B, Yu L, Wang H K, Li T S and Wang S W. 2020. Ψ-Net: focusing on the border areas of intracerebral hemorrhage on CT images. Computer Methods and Programs in Biomedicine, 194: #105546 [ 1016 / j. cmpb. 2020. 105546]
[23]
Lan H R, Jiang D H, Yang C C, Gao F and Gao F. 2020. Y-Net: hybrid deep learning image reconstruction for photoacoustic tomography in vivo. Photoacoustics, 20: #100197 [ 1016 / j. pacs. 2020. 100197]
[24]
ee S, Negishi M, Urakubo H, Kasai H and Ishii S. 2020. Mu-net: multi-scale U-net for two-photon microscopy image denoising and restoration. Neural Networks, 125: 92-103 [ 1016 / j. neunet. 2020. 01. 026]
[25]
Lian S, Luo Z M, Zhong Z, Lin X, Su S Z and Li S Z. 2018. Attention guided U-Net for accurate iris segmentation. Journal of Visual Communication and Image Representation, 56: 296-304 [ 1016 / j. jvcir. 2018. 10. 001]

Cited By

View all
  • (2024)A Comprehensive Exploration of Convolutional Neural Network Architectures in Deep LearningProceedings of International Conference on Recent Innovations in Computing10.1007/978-981-97-3442-9_12(175-195)Online publication date: 23-Oct-2024
  • (2023)Multi-Layer Preprocessing and U-Net with Residual Attention Block for Retinal Blood Vessel SegmentationDiagnostics10.3390/diagnostics1321336413:21(3364)Online publication date: 1-Nov-2023
  • (2023)IEEE BigData Cup 2023 Report: Object Recognition with Muon Tomography Using Cosmic Rays2023 IEEE International Conference on Big Data (BigData)10.1109/BigData59044.2023.10386564(6084-6091)Online publication date: 15-Dec-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
AIPR '22: Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition
September 2022
1221 pages
ISBN:9781450396899
DOI:10.1145/3573942
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 May 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Deep learning
  2. Medical images
  3. Network structure
  4. U-Net

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

AIPR 2022

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)80
  • Downloads (Last 6 weeks)7
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Comprehensive Exploration of Convolutional Neural Network Architectures in Deep LearningProceedings of International Conference on Recent Innovations in Computing10.1007/978-981-97-3442-9_12(175-195)Online publication date: 23-Oct-2024
  • (2023)Multi-Layer Preprocessing and U-Net with Residual Attention Block for Retinal Blood Vessel SegmentationDiagnostics10.3390/diagnostics1321336413:21(3364)Online publication date: 1-Nov-2023
  • (2023)IEEE BigData Cup 2023 Report: Object Recognition with Muon Tomography Using Cosmic Rays2023 IEEE International Conference on Big Data (BigData)10.1109/BigData59044.2023.10386564(6084-6091)Online publication date: 15-Dec-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media