skip to main content
10.1145/3574198.3574220acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbeConference Proceedingsconference-collections
research-article

Clustering-Based Support Vector Machine (SVM) for Symptomatic Knee Osteoarthritis Severity Classification

Authors Info & Claims
Published:15 March 2023Publication History

ABSTRACT

The application of machine learning in gait biomechanics of knee osteoarthritis (OA) had been reported in many previous studies. Instead of using radiographic severity classification to grade OA, this study employed pain scores and gait features to characterize knee OA. Pain scores from Knee Injury and Osteoarthritis Outcome Score (KOOS) and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP) with correlated spatiotemporal, kinematic, and electromyography features were utilized as features. Using k-means clustering to cluster severity, the severity class were then trained and tested using Support Vector Machine classifier. The best performance classification model with an accuracy 85.2% for the training set and 91.2% for the testing set was the dataset of ICOAP constant pain with its correlated gait features, with medium Gaussian Kernel and three severity levels as clustered by K-means. The ranking of features for each dataset was also discovered using the ReliefF algorithm.

References

  1. Phinyomark, A., Petri, G., Ibáñez-Marcelo, E., Osis, S. T. and Ferber, R. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions. Journal of Medical and Biological Engineering, 38, 2 (2018/04/01 2018), 244-260.Google ScholarGoogle ScholarCross RefCross Ref
  2. Laroche, D., Tolambiya, A., Morisset, C., Maillefert, J. F., French, R. M., Ornetti, P. and Thomas, E. A classification study of kinematic gait trajectories in hip osteoarthritis. Computers in Biology and Medicine, 55 (2014/12/01/ 2014), 42-48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Nair, S. S., French, R. M., Laroche, D. and Thomas, E. The Application of Machine Learning Algorithms to the Analysis of Electromyographic Patterns From Arthritic Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18, 2 (2010), 174-184.Google ScholarGoogle ScholarCross RefCross Ref
  4. Wei, T. S., Liu, P. T., Chang, L. W. and Liu, S. Y. Gait asymmetry, ankle spasticity, and depression as independent predictors of falls in ambulatory stroke patients. Plos One, 12, 5 (May 2017).Google ScholarGoogle Scholar
  5. Roshdibenam, V., Jogerst, G. J., Butler, N. R. and Baek, S. Machine Learning Prediction of Fall Risk in Older Adults Using Timed Up and Go Test Kinematics. Sensors, 21, 10 (May 2021).Google ScholarGoogle ScholarCross RefCross Ref
  6. Ross, G. B., Dowling, B., Troje, N. F., Fischer, S. L. and Graham, R. B. Classifying Elite From Novice Athletes Using Simulated Wearable Sensor Data. Frontiers in Bioengineering and Biotechnology, 8 (2020-August-04 2020).Google ScholarGoogle Scholar
  7. Nelson, A. E. Osteoarthritis year in review 2017: clinical. Osteoarthritis and Cartilage, 26, 3 (2018/03/01/ 2018), 319-325.Google ScholarGoogle ScholarCross RefCross Ref
  8. Hunter, D. J. and Bierma-Zeinstra, S. Osteoarthritis. The Lancet, 393, 10182 (2019/04/27/ 2019), 1745-1759.Google ScholarGoogle Scholar
  9. Buckwalter, J. A. and Martin, J. A. Osteoarthritis. Advanced Drug Delivery Reviews, 58, 2 (2006/05/20/ 2006), 150-167.Google ScholarGoogle Scholar
  10. Kokkotis, C., Moustakidis, S., Papageorgiou, E., Giakas, G. and Tsaopoulos, D. E. Machine learning in knee osteoarthritis: A review. Osteoarthritis and Cartilage Open, 2, 3 (2020/09/01/ 2020), 100069.Google ScholarGoogle ScholarCross RefCross Ref
  11. Abid, M., Mezghani, N. and Mitiche, A. Knee Joint Biomechanical Gait Data Classification for Knee Pathology Assessment: A Literature Review. Applied Bionics and Biomechanics, 2019 (2019), 14.Google ScholarGoogle ScholarCross RefCross Ref
  12. Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D., Alzantot, M., Cerutti, F., Srivastava, M., Preece, A., Julier, S., Rao, R. M., Kelley, T. D., Braines, D., Sensoy, M., Willis, C. J. and Gurram, P. Interpretability of deep learning models: A survey of results. City, 2017.Google ScholarGoogle Scholar
  13. Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J. and Delp, S. L. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. Journal of Biomechanics, 81 (2018/11/16/ 2018), 1-11.Google ScholarGoogle ScholarCross RefCross Ref
  14. Levinger, P., Lai, D. T. H., Begg, R. K., Webster, K. E. and Feller, J. A. The application of support vector machines for detecting recovery from knee replacement surgery using spatio-temporal gait parameters. Gait & Posture, 29, 1 (2009/01/01/ 2009), 91-96.Google ScholarGoogle ScholarCross RefCross Ref
  15. Moustakidis, S. P., Theocharis, J. B. and Giakas, G. A fuzzy decision tree-based SVM classifier for assessing osteoarthritis severity using ground reaction force measurements. Medical Engineering & Physics, 32, 10 (2010/12/01/ 2010), 1145-1160.Google ScholarGoogle ScholarCross RefCross Ref
  16. Yoo, T. K., Kim, S. K., Choi, S. B., Kim, D. Y. and Kim, D. W. Interpretation of movement during stair ascent for predicting severity and prognosis of knee osteoarthritis in elderly women using support vector machine. City, 2013.Google ScholarGoogle Scholar
  17. Yang, J. H., Park, J. H., Jang, S. H. and Cho, J. Novel Method of Classification in Knee Osteoarthritis: Machine Learning Application Versus Logistic Regression Model. Annals of Rehabilitation Medicine-Arm, 44, 6 (Dec 2020), 415-427.Google ScholarGoogle Scholar
  18. Elbaz, A., Mor, A., Segal, G., Debi, R., Shazar, N. and Herman, A. Novel classification of knee osteoarthritis severity based on spatiotemporal gait analysis. Osteoarthritis and Cartilage, 22, 3 (2014/03/01/ 2014), 457-463.Google ScholarGoogle ScholarCross RefCross Ref
  19. Leporace, G., Gonzalez, F., Metsavaht, L., Motta, M., Carpes, F. P., Chahla, J. and Luzo, M. Are there different gait profiles in patients with advanced knee osteoarthritis? A machine learning approach. Clinical Biomechanics, 88 (2021/08/01/ 2021), 105447.Google ScholarGoogle ScholarCross RefCross Ref
  20. Petersen, E. T., Rytter, S., Koppens, D., Dalsgaard, J., Hansen, T. B., Larsen, N. E., Andersen, M. S. and Stilling, M. Patients with knee osteoarthritis can be divided into subgroups based on tibiofemoral joint kinematics of gait – an exploratory and dynamic radiostereometric study. Osteoarthritis and Cartilage (2021/10/29/ 2021).Google ScholarGoogle Scholar
  21. Deveza, L. A., Melo, L., Yamato, T. P., Mills, K., Ravi, V. and Hunter, D. J. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis and Cartilage, 25, 12 (2017/12/01/ 2017), 1926-1941.Google ScholarGoogle ScholarCross RefCross Ref
  22. Heidari, B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Caspian J Intern Med, 2, 2 (Spring 2011), 205-212.Google ScholarGoogle Scholar
  23. Bedson, J. and Croft, P. R. The discordance between clinical and radiographic knee osteoarthritis: A systematic search and summary of the literature. BMC Musculoskeletal Disorders, 9, 1 (2008/09/02 2008), 116.Google ScholarGoogle ScholarCross RefCross Ref
  24. Swagerty, D. L., Jr. and Hellinger, D. Radiographic assessment of osteoarthritis. Am Fam Physician, 64, 2 (Jul 15 2001), 279-286.Google ScholarGoogle Scholar
  25. Roemer, F. W., Eckstein, F., Hayashi, D. and Guermazi, A. The role of imaging in osteoarthritis. Best Practice & Research Clinical Rheumatology, 28, 1 (2014/02/01/ 2014), 31-60.Google ScholarGoogle ScholarCross RefCross Ref
  26. Nebel, M. B., Sims, E. L., Keefe, F. J., Kraus, V. B., Guilak, F., Caldwell, D. S., Pells, J. J., Queen, R. and Schmitt, D. The Relationship of Self-Reported Pain and Functional Impairment to Gait Mechanics in Overweight and Obese Persons With Knee Osteoarthritis. Archives of Physical Medicine and Rehabilitation, 90, 11 (2009), 1874-1879.Google ScholarGoogle Scholar
  27. Kito, N., Shinkoda, K., Yamasaki, T., Kanemura, N., Anan, M., Okanishi, N., Ozawa, J. and Moriyama, H. Contribution of knee adduction moment impulse to pain and disability in Japanese women with medial knee osteoarthritis. Clinical Biomechanics, 25, 9 (2010/11/01/ 2010), 914-919.Google ScholarGoogle ScholarCross RefCross Ref
  28. O'Connell, M., Farrokhi, S. and Fitzgerald, G. K. The role of knee joint moments and knee impairments on self-reported knee pain during gait in patients with knee osteoarthritis. Clinical Biomechanics, 31 (2016), 40-46.Google ScholarGoogle ScholarCross RefCross Ref
  29. Park, S.-K., Kobsar, D. and Ferber, R. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis. Clinical Biomechanics, 38 (2016/10/01/ 2016), 68-74.Google ScholarGoogle ScholarCross RefCross Ref
  30. Marriott, K. A., Birmingham, T. B., Leitch, K. M., Pinto, R. and Giffin, J. R. Strong independent associations between gait biomechanics and pain in patients with knee osteoarthritis. Journal of Biomechanics, 94 (2019/09/20/ 2019), 123-129.Google ScholarGoogle ScholarCross RefCross Ref
  31. Debi, R., Mor, A., Segal, G., Segal, O., Agar, G., Debbi, E., Halperin, N., Haim, A. and Elbaz, A. Correlation between single limb support phase and self-evaluation questionnaires in knee osteoarthritis populations. Disability and Rehabilitation, 33, 13-14 (2011/01/01 2011), 1103-1109.Google ScholarGoogle ScholarCross RefCross Ref
  32. Naili, J. E., Esbjörnsson, A.-C., Iversen, M. D., Schwartz, M. H., Hedström, M., Häger, C. K. and Broström, E. W. The impact of symptomatic knee osteoarthritis on overall gait pattern deviations and its association with performance-based measures and patient-reported outcomes. The Knee, 24, 3 (2017/06/01/ 2017), 536-546.Google ScholarGoogle ScholarCross RefCross Ref
  33. Hermens, H. J., Freriks, B., Disselhorst-Klug, C. and Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10, 5 (2000/10/01/ 2000), 361-374.Google ScholarGoogle ScholarCross RefCross Ref
  34. Vicon Vicon Documentation: Lower body modeling with Plug-in Gait. Vicon Motion Systems, City.Google ScholarGoogle Scholar
  35. Jackson, J. E. A user's guide to principal components. John Wiley & Sons, 2005.Google ScholarGoogle Scholar
  36. Astephen, J. L. and Deluzio, K. J. A multivariate gait data analysis technique: Application to knee osteoarthritis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 218, 4 (2004/04/01 2004), 271-279.Google ScholarGoogle Scholar
  37. Şen Köktaş, N., Yalabik, N., Yavuzer, G. and Duin, R. P. W. A multi-classifier for grading knee osteoarthritis using gait analysis. Pattern Recognition Letters, 31, 9 (2010/07/01/ 2010), 898-904.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. McBride, J., Zhang, S., Wortley, M., Paquette, M., Klipple, G., Byrd, E., Baumgartner, L. and Zhao, X. Neural network analysis of gait biomechanical data for classification of knee osteoarthritis. City, 2011.Google ScholarGoogle Scholar
  39. Kobsar, D., Osis, S. T., Hettinga, B. A. and Ferber, R. Gait Biomechanics and Patient-Reported Function as Predictors of Response to a Hip Strengthening Exercise Intervention in Patients with Knee Osteoarthritis. PLOS ONE, 10, 10 (2015), e0139923.Google ScholarGoogle Scholar
  40. Mezghani, M., Hagemeister, N., Ouakrim, Y., Cagnin, A., Fuentes, A. and Mezghani, N. 3D Kinematics and Decision Trees to Predict the Impact of a Physical Exercise Program on Knee Osteoarthritis Patients. Applied Sciences, 11, 2 (2021).Google ScholarGoogle ScholarCross RefCross Ref
  41. Roos, E. M. and Lohmander, L. S. The Knee injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health and Quality of Life Outcomes, 1 (11/03 06/30/received 11/03/accepted 2003), 64-64.Google ScholarGoogle Scholar
  42. Hawker, G. A., Stewart, L., French, M. R., Cibere, J., Jordan, J. M., March, L., Suarez-Almazor, M. and Gooberman-Hill, R. Understanding the pain experience in hip and knee osteoarthritis – an OARSI/OMERACT initiative. Osteoarthritis and Cartilage, 16, 4 (2008/04/01/ 2008), 415-422.Google ScholarGoogle ScholarCross RefCross Ref
  43. Neogi, T. The Epidemiology and Impact of Pain in Osteoarthritis. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society, 21, 9 (2013), 1145-1153.Google ScholarGoogle ScholarCross RefCross Ref
  44. Mills, K., Hunt, M. A. and Ferber, R. Biomechanical deviations during level walking associated with knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken), 65, 10 (Oct 2013), 1643-1665.Google ScholarGoogle Scholar
  45. Astephen, J. L., Deluzio, K. J., Caldwell, G. E., Dunbar, M. J. and Hubley-Kozey, C. L. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels. Journal of Biomechanics, 41, 4 (2008/01/01/ 2008), 868-876.Google ScholarGoogle ScholarCross RefCross Ref
  46. Heiden, T. L., Lloyd, D. G. and Ackland, T. R. Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait. Clinical Biomechanics, 24, 10 (2009/12/01/ 2009), 833-841.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Clustering-Based Support Vector Machine (SVM) for Symptomatic Knee Osteoarthritis Severity Classification

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ICBBE '22: Proceedings of the 2022 9th International Conference on Biomedical and Bioinformatics Engineering
        November 2022
        306 pages
        ISBN:9781450397223
        DOI:10.1145/3574198

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 March 2023

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited
      • Article Metrics

        • Downloads (Last 12 months)39
        • Downloads (Last 6 weeks)5

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format