skip to main content
10.1145/3575882.3575910acmotherconferencesArticle/Chapter ViewAbstractPublication Pagesic3inaConference Proceedingsconference-collections
research-article

Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern

Published:27 February 2023Publication History

ABSTRACT

Turing's model is a model contains reaction-diffusion equation that capable to form skin patterns on an animal. In this paper, Turing's model was investigated, with the model improvisation by Barrio et al. [12], in parallel programming to shown its speed up impact. The parallel programming managed to speed up the process up to 8.9 times while retaining the quality of the result, compared to traditional programming.

References

  1. A. M. Turing. 1952. The Chemical Basis of Morphogenesis. Philos. Trans. R. Soc. Lond, Ser. B. Biol. Vol. 237, No. 641 (Aug. 1952), 37-72. https://doi.org/10.1098/rstb.1952.0012Google ScholarGoogle Scholar
  2. L. M. McNamara. 2017. Comprehensive Biomaterials II, 2.10 Bone as a Material, 202-227. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.10127-4Google ScholarGoogle Scholar
  3. T. Sekimura, A. Madzvamuse, A. J. Wathen, and P. K. Maini, 2000. A model for colour pattern formation in the butterfly wing of Papilio Dardanus. In Proceedings of the Royal Society B Biological Sciences, 7 May, 2000, London, Royal Society. https://doi.org/10.1098/rspb.2000.1081Google ScholarGoogle Scholar
  4. F. Shakeri and M. Dehghan. 2011. The finite volume spectral element method to solve Turing models in the biological pattern formation. Comput. Math. With Appl. 62, 12 (Dec. 2011), 4322-4336 https://doi.org/10.1016/j.camwa.2011.09.049Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Madzvamuse, A. J. Wathen, P. K. Maini, 2003. A moving grid finite element method applied to a model biological pattern generator. J. Comput. Phys. 190, 2 (Sept. 2003), 478-500. https://doi.org/10.1016/S0021-9991(03)00294-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Zhu, Y. -T. Zhang, S. A. Newman, M. Alber, 2009. Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology. J. Sci, Comput. 40, (July 2009), 391-418. https://doi.org/10.1007/s10915-008-9218-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. T. Liu, S. S. Liaw, and P. K. Maini, 2005. Two-stage Turing model for generating pigment patterns on the leopard and the jaguar. Phys. Rev. E 74, 1, 011914 (July 2006). https://doi.org/10.1103/PhysRevE.74.011914Google ScholarGoogle ScholarCross RefCross Ref
  8. J. H. E. Cartwright. 2001. Labyrinthine Turing Pattern Formation in the Cerebral Cortex. J. Theor. Biol. 217, 1 (March 2002), 97-103. https://doi.org/10.1006/jtbi.2002.3012Google ScholarGoogle Scholar
  9. H. Kim, A. Yun, S. Yoon, C. Lee, J. Park, J. Kim, 2020. Pattern formation in reaction-diffusion systems on evolving surfaces. Comput. Math. With Appl. 80, 9 (Nov. 2020), 2019-2028. https://doi.org/10.1016/j.camwa.2020.08.026Google ScholarGoogle ScholarCross RefCross Ref
  10. S. A. Sarra. 2012. A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains. App. Math. And Comp. 218 (2012), 9853-9865. https://doi.org/10.1016/j.amc.2012.03.062Google ScholarGoogle ScholarCross RefCross Ref
  11. M. W. Smiley. 2008. An efficient implementation of a numerical method for a chemotaxis system. J. Comput. Math. 86, 2 (Dec. 2008), 219-235. https://doi.org/10.1080/00207160701864475Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R. A. Barrio, C. Varea, J. L. Aragon, 1999. A Two-dimensional Numerical Study of Spatial Pattern Formation in Interacting Turing Systems. Bull. Math. Biol. 61, (May 1999), 483-505. https://doi.org/10.1006/bulm.1998.0093Google ScholarGoogle ScholarCross RefCross Ref
  13. W. L. Allen, I. C. Cuthill, N. E. Scott-Samuel, R. Baddeley, 2010. Why the leopard got its spot: relating pattern development to ecology in felids. In Proceedings of the Royal Society B Biological Sciences, 20 Oct. 2010, London, Royal Society. https://doi.org/10.1098/rspb.2010.1734Google ScholarGoogle Scholar
  14. J. C. Butcher. 2008. Numerical Methods for Ordinary Differential Equations (2nd. Ed.). John Wiley & Sons, Chichester, West Sussex, UK.Google ScholarGoogle Scholar
  15. A. H. Workie. 2020. New Modification on Heun's Method Based on Contraharmonic Mean for Solving Initial Value Problems with High Efficiency. J. Math. 2020, Article 6650855 (Dec. 2020). https://doi.org/10.1155/2020/6650855Google ScholarGoogle Scholar
  16. J. Cheng, M. Grossman, T. McKercher, 2014. Professional CUDA C Programming. John Wiley & Sons, Indianapolis, Indiana, US.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    IC3INA '22: Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications
    November 2022
    415 pages
    ISBN:9781450397902
    DOI:10.1145/3575882

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 27 February 2023

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)14
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format