skip to main content
10.1145/3575882.3575915acmotherconferencesArticle/Chapter ViewAbstractPublication Pagesic3inaConference Proceedingsconference-collections
research-article

Virtual Screening of HMG-CoA reductase inhibitors of West Bali National Park natural compounds database using machine learning

Authors Info & Claims
Published:27 February 2023Publication History

ABSTRACT

Atherosclerosis is one of the causes of cardiovascular disease (CVD). The high level of cholesterol which is controlled by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase plays an essential role in the pathogenesis of atherosclerosis. By inhibiting the activity of HMG-CoA reductase, the biosynthesis of cholesterol may be limited and therefore contribute to the reduction of blood cholesterol. This research aims to identify the hit compounds of HMG-CoA reductase inhibitors from the natural compounds database of West Bali National Park from the Internal PRBBOT BRIN database (Indonesia's natural compounds data base). We conducted a virtual screening workflow using a quantitative structure-activity relationship (QSAR) strategy based on artificial intelligence approach to allow faster screening of HMG-CoA reductase inhibitor from 2608 compounds. Eight classifications and five regressions in machine learning algorithms were applied to build a virtual screening workflow using the 1173 compounds dataset from the ChEMBL database. The classification QSAR model used the Random Forest and Fuzzy Rule algorithm with a tied score of accuracy were 0.972 and the regression QSAR model used the Tree Ensemble algorithm with the R2 pred = 0.88. Virtual screening results identified three hit compounds as HMG-CoA reductase inhibitors from Calophyllum inophyllum L., including Inocalophyllin B, Brasiliensic acid, and Inophylloidic acid. These results indicated the benefit of the machine learning approaches for potential screening compounds as an inhibitor for the HMG-CoA reductase enzyme, and it may be useful to screen various drug candidates for other target diseases.

Skip Supplemental Material Section

Supplemental Material

video1021478950.mp4

mp4

25.1 MB

References

  1. S. H. Lin, K. J. Huang, C. F. Weng, and D. Shiuan, “Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening,” Drug Des. Devel. Ther., vol. 9, pp. 3313–3324, 2015, doi: 10.2147/DDDT.S84641.Google ScholarGoogle Scholar
  2. M. Son, A. Baek, S. Sakkiah, C. Park, S. John, and K. W. Lee, “Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations,” PLoS One, vol. 8, no. 12, pp. 1–10, 2013, doi: 10.1371/journal.pone.0083496.Google ScholarGoogle ScholarCross RefCross Ref
  3. P. R. Hebert, J. M. Gaziano, K. S. Chan, and C. H. Hennekens, “Cholesterol Lowering With Statin Drugs, Risk of Stroke, and Total Mortality,” Surv. Anesthesiol., vol. 278, no. 4, pp. 313–321, 1997, doi: 10.1097/00132586-199806000-00060.Google ScholarGoogle Scholar
  4. E. S. Istvan, “Structural mechanism for statin inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase,” Am. Heart J., vol. 144, no. 6 SUPPL., 2002, doi: 10.1067/mhj.2002.130300.Google ScholarGoogle Scholar
  5. V. B. Da Silva, C. A. Taft, and C. H. T. P. Silva, “Use of virtual screening, flexible docking, and molecular interaction fields to design novel HMG-CoA reductase inhibitors for the treatment of hypercholesterolemia,” J. Phys. Chem. A, vol. 112, no. 10, pp. 2007–2011, 2008, doi: 10.1021/jp075502e.Google ScholarGoogle ScholarCross RefCross Ref
  6. W. Gai, Y. L. Zhang, L. Ai, and Y. J. Qiao, “Screening of HMG-CoA Reductase Inhibitors from Composite Salvia Miltiorrhiza Using Autodock,” Chin. J. Nat. Med., vol. 8, no. 1, pp. 51–56, 2010, doi: 10.1016/S1875-5364(10)60006-4.Google ScholarGoogle ScholarCross RefCross Ref
  7. X. Huo, F. Lu, L. Qiao, G. Li, and Y. Zhang, “A component formula of Chinese medicine for hypercholesterolemia based on virtual screening and biology network,” Evidence-based Complement. Altern. Med., vol. 2018, 2018, doi: 10.1155/2018/1854972.Google ScholarGoogle ScholarCross RefCross Ref
  8. R. Marahatha , “Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: in silico analysis,” BMC Complement. Med. Ther., vol. 21, no. 1, pp. 1–11, 2021, doi: 10.1186/s12906-020-03162-5.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. A. Tapiory, K. O. Pertiwi, K. Fadilla, D. Reyhanditya, and F. Fatchiyah, “JSMARTech CoA Reductase Inhibitor Complexes,” J. Smart Bioprospecting Technol., vol. 1, no. 2, pp. 5–9, 2020.Google ScholarGoogle Scholar
  10. Q. Y. Zhang , “Structure-based rational quest for potential novel inhibitors of human HMG-CoA reductase by combining CoMFA 3D QSAR modeling and virtual screening,” J. Comb. Chem., vol. 9, no. 1, pp. 131–138, 2007, doi: 10.1021/cc060101e.Google ScholarGoogle ScholarCross RefCross Ref
  11. O. Hermansyah, A. Bustamam, and A. Yanuar, “Virtual screening of dipeptidyl peptidase-4 inhibitors using quantitative structure–activity relationship-based artificial intelligence and molecular docking of hit compounds,” Comput. Biol. Chem., vol. 95, Dec. 2021, doi: 10.1016/j.compbiolchem.2021.107597.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Beisken, T. Meinl, B. Wiswedel, L. F. De Figueiredo, and M. Berthold, “KNIME-CDK: Workflow-driven cheminformatics,” BMC Informatics, vol. 14, no. 257, pp. 2–5, 2013, [Online]. Available: http://www.biomedcentral.com/1471-2105/14/257Google ScholarGoogle Scholar
  13. G. Falcón-Cano, C. Molina, and M. Á. Cabrera-Pérez, “ADME Prediction with KNIME: Development and Validation of a Publicly Available Workflow for the Prediction of Human Oral Bioavailability,” J. Chem. Inf. Model., vol. 60, no. 6, pp. 2660–2667, Jun. 2020, doi: 10.1021/acs.jcim.0c00019.Google ScholarGoogle ScholarCross RefCross Ref
  14. N. S. H. N. Moorthy and V. Poongavanam, “The KNIME based classification models for yellow fever virus inhibition,” RSC Adv., vol. 5, no. 19, pp. 14663–14669, 2015, doi: 10.1039/c4ra15317k.Google ScholarGoogle ScholarCross RefCross Ref
  15. S. Kausar and A. O. Falcao, “An automated framework for QSAR model building,” J. Cheminform., vol. 10, no. 1, pp. 1–23, 2018, doi: 10.1186/s13321-017-0256-5.Google ScholarGoogle ScholarCross RefCross Ref
  16. D. Sydow, M. Wichmann, J. Rodríguez-Guerra, D. Goldmann, G. Landrum, and A. Volkamer, “TeachOpenCADD-KNIME: A Teaching Platform for Computer-Aided Drug Design Using KNIME Workflows,” 2019, doi: 10.5281/zenodo.3475086.Google ScholarGoogle Scholar
  17. K. Roy, S. Kar, and R. N. Das, A Primer on QSAR/QSPR Modeling: Fundamental Concepts (Springer Briefs in Molecular Sciences). 2015. [Online]. Available: http://link.springer.com/10.1007/978-3-319-17281-1Google ScholarGoogle ScholarCross RefCross Ref
  18. P. Gramatica, On the development and validation of QSAR models, vol. 930. 2013. doi: 10.1007/978-1-62703-059-5_21.Google ScholarGoogle ScholarCross RefCross Ref
  19. T. O. Ayodele, “Types of Machine Learning Algorithms,” in New Advances in Machine Learning, 1st ed., Y. Zhang, Ed. Rijeke: InTech, 2010, pp. 19–48. [Online]. Available: http://www.intechopen.com/books/new-advances-in-machine-learning/types-of-machine-learning-algorithmsGoogle ScholarGoogle Scholar
  20. V. Svetnik, A. Liaw, C. Tong, J. Christopher Culberson, R. P. Sheridan, and B. P. Feuston, “Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling,” J. Chem. Inf. Comput. Sci., vol. 43, no. 6, pp. 1947–1958, 2003, doi: 10.1021/ci034160g.Google ScholarGoogle ScholarCross RefCross Ref
  21. X. Wang, X. Liu, W. Pedrycz, and L. Zhang, “Fuzzy rule based decision trees,” Pattern Recognit., vol. 48, no. 1, pp. 50–59, 2015, doi: 10.1016/j.patcog.2014.08.001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, C. P. Varghese, and R. K. Agrawal, “Validation of QSAR Models - Strategies and Importance,” Int. J. Drug Des. Disocovery, vol. 2, no. 3, pp. 511–519, 2011.Google ScholarGoogle Scholar
  23. W. Sai, G. B. Chai, and N. Srikanth, “Fatigue Life Prediction of GLARE Composites Using Regression Tree Ensemble-Based Machine Learning Model,” Adv. Theory Simulations, vol. 3, no. 6, pp. 1–11, 2020, doi: 10.1002/adts.202000048.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. C. Dweck and T. Meadowsy, “Tamanu (Calophyllum inophyllum) - the Afrikan, Asian, Polynesian and Pacific Panacea,” Int. J. Cosmet. Sci., vol. 24, no. 160, pp. 1–8, 2002.Google ScholarGoogle Scholar
  25. J. B. Friday and D. Okano, “Calophyllum inophyllum (kamani) Clusiaceae (syn. Guttiferae) (mangosteen family) Species Profiles for Pacific Island Agroforestry www.traditionaltree.org,” Doc-Developpement-Durable.Org, no. April, 2006, [Online]. Available: www.traditionaltree.orgGoogle ScholarGoogle Scholar
  26. H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, and R. S. Norhasyima, “Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3501–3515, 2011, doi: 10.1016/j.rser.2011.05.005.Google ScholarGoogle ScholarCross RefCross Ref
  27. B. K. Venkanna and C. Venkataramana Reddy, “Biodiesel production and optimization from Calophyllum inophyllum linn oil (honne oil) - A three stage method,” Bioresour. Technol., vol. 100, no. 21, pp. 5122–5125, 2009, doi: 10.1016/j.biortech.2009.05.023.Google ScholarGoogle ScholarCross RefCross Ref
  28. M. C. Yimdjo, A. G. Azebaze, A. E. Nkengfack, A. M. Meyer, B. Bodo, and Z. T. Fomum, “Antimicrobial and cytotoxic agents from Calophyllum inophyllum,” Phytochemistry, vol. 65, no. 20, pp. 2789–2795, 2004, doi: 10.1016/j.phytochem.2004.08.024.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Virtual Screening of HMG-CoA reductase inhibitors of West Bali National Park natural compounds database using machine learning

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      IC3INA '22: Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications
      November 2022
      415 pages
      ISBN:9781450397902
      DOI:10.1145/3575882

      Copyright © 2022 ACM

      © 2022 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 February 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)21
      • Downloads (Last 6 weeks)3

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format