skip to main content
10.1145/3576915.3623131acmconferencesArticle/Chapter ViewAbstractPublication PagesccsConference Proceedingsconference-collections
research-article
Open access

Efficient Set Membership Encryption and Applications

Published: 21 November 2023 Publication History

Abstract

The emerging area of laconic cryptography [Cho et al., CRYPTO'17] involves the design of two-party protocols involving a sender and a receiver, where the receiver's input is large. The key efficiency requirement is that the protocol communication complexity must be independent of the receiver's input size. In recent years, many tasks have been studied under this umbrella, including laconic oblivious transfer (ℓOT).
In this work, we introduce the notion of Set Membership Encryption (SME) - a new member in the area of laconic cryptography. SME allows a sender to encrypt to one recipient from a universe of receivers, while using a small digest from a large subset of receivers. A recipient is only able to decrypt the message if and only if it is part of the large subset. We show that ℓOT can be derived from SME.
We provide efficient constructions of SME using bilinear groups. Our solutions achieve orders of magnitude improvements in decryption times than state-of-the-art (on ℓOT) and significant improvements overall in concrete efficiency over initial works in the area of laconic cryptography, albeit at the cost of worse asymptotics.

References

[1]
Shweta Agrawal and Razvan Rocsie. 2021. Adaptively Secure Laconic Function Evaluation for NC1. (2021).
[2]
Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Sihang Pu. 2021. Laconic Private Set Intersection and Applications. Cryptology ePrint Archive, Report 2021/728. https://eprint.iacr.org/2021/729.
[3]
Diego Aranha, Chuanwei Lin, Claudio Orlandi, and Mark Simkin. 2022. Laconic Private Set-Intersection From Pairings. Cryptology ePrint Archive, Report 2022/529. https://eprint.iacr.org/2022/529.
[4]
Donald Beaver. 1996. Correlated Pseudorandomness and the Complexity of Private Computations. In 28th ACM STOC. ACM Press, 479--488. https://doi.org/10.1145/237814.237996
[5]
Dan Boneh, Xavier Boyen, and Eu-Jin Goh. 2005 a. Hierarchical Identity Based Encryption with Constant Size Ciphertext. In EUROCRYPT 2005 (LNCS, Vol. 3494), Ronald Cramer (Ed.). Springer, Heidelberg, 440--456. https://doi.org/10.1007/11426639_26
[6]
Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from the Weil Pairing. In CRYPTO 2001 (LNCS, Vol. 2139), Joe Kilian (Ed.). Springer, Heidelberg, 213--229. https://doi.org/10.1007/3-540-44647-8_13
[7]
Dan Boneh, Craig Gentry, and Brent Waters. 2005 b. Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In CRYPTO 2005 (LNCS, Vol. 3621), Victor Shoup (Ed.). Springer, Heidelberg, 258--275. https://doi.org/10.1007/11535218_16
[8]
Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional Encryption: Definitions and Challenges. In TCC 2011 (LNCS, Vol. 6597), Yuval Ishai (Ed.). Springer, Heidelberg, 253--273. https://doi.org/10.1007/978-3-642-19571--6_16
[9]
Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. 2018. Anonymous IBE, Leakage Resilience and Circular Security from New Assumptions. In EUROCRYPT 2018, Part I (LNCS, Vol. 10820), Jesper Buus Nielsen and Vincent Rijmen (Eds.). Springer, Heidelberg, 535--564. https://doi.org/10.1007/978-3-319-78381-9_20
[10]
Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Polychroniadou. 2017. Laconic Oblivious Transfer and Its Applications. In CRYPTO 2017, Part II (LNCS, Vol. 10402), Jonathan Katz and Hovav Shacham (Eds.). Springer, Heidelberg, 33--65. https://doi.org/10.1007/978-3-319-63715-0_2
[11]
Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. 2021. Optimizing Registration Based Encryption. Cryptology ePrint Archive, Report 2021/499. https://ia.cr/2021/499.
[12]
Nico Döttling and Sanjam Garg. 2017. Identity-Based Encryption from the Diffie-Hellman Assumption. In CRYPTO 2017, Part I (LNCS, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.). Springer, Heidelberg, 537--569. https://doi.org/10.1007/978-3-319-63688-7_18
[13]
Nico Döttling, Sanjam Garg, Vipul Goyal, and Giulio Malavolta. 2019a. Laconic Conditional Disclosure of Secrets and Applications. In 60th FOCS, David Zuckerman (Ed.). IEEE Computer Society Press, 661--685. https://doi.org/10.1109/FOCS.2019.00046
[14]
Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. 2018. New Constructions of Identity-Based and Key-Dependent Message Secure Encryption Schemes. In PKC 2018, Part I (LNCS, Vol. 10769), Michel Abdalla and Ricardo Dahab (Eds.). Springer, Heidelberg, 3--31. https://doi.org/10.1007/978-3-319-76578-5_1
[15]
Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky. 2019b. Trapdoor Hash Functions and Their Applications. In CRYPTO 2019, Part III (LNCS, Vol. 11694), Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, 3--32. https://doi.org/10.1007/978-3-030-26954-8_1
[16]
Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza Rahimi. 2023. Efficient Laconic Cryptography from Learning with Errors. In EUROCRYPT 2023, Part III (LNCS, Vol. 14006), Carmit Hazay and Martijn Stam (Eds.). Springer, Heidelberg, 417--446. https://doi.org/10.1007/978-3-031-30620-4_14
[17]
Harry Eldridge, Aarushi Goel, Matthew Green, Abhishek Jain, and Maximilian Zinkus. 2022. One-Time Programs from Commodity Hardware. Cryptology ePrint Archive, Report 2022/1257. https://eprint.iacr.org/2022/1257.
[18]
Uriel Feige, Dror Lapidot, and Adi Shamir. 1990. Multiple Non-Interactive Zero Knowledge Proofs Based on a Single Random String (Extended Abstract). In 31st FOCS. IEEE Computer Society Press, 308--317. https://doi.org/10.1109/FSCS.1990.89549
[19]
Amos Fiat and Moni Naor. 1994. Broadcast Encryption. In CRYPTO'93 (LNCS, Vol. 773), Douglas R. Stinson (Ed.). Springer, Heidelberg, 480--491. https://doi.org/10.1007/3-540-48329-2_40
[20]
Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. 2018a. Registration-Based Encryption: Removing Private-Key Generator from IBE. In TCC 2018, Part I (LNCS, Vol. 11239), Amos Beimel and Stefan Dziembowski (Eds.). Springer, Heidelberg, 689--718. https://doi.org/10.1007/978-3-030-03807-6_25
[21]
Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar. 2019. Registration-Based Encryption from Standard Assumptions. In PKC 2019, Part II (LNCS, Vol. 11443), Dongdai Lin and Kazue Sako (Eds.). Springer, Heidelberg, 63--93. https://doi.org/10.1007/978-3-030-17259-6_3
[22]
Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. 2018b. Adaptive Garbled RAM from Laconic Oblivious Transfer. In CRYPTO 2018, Part III (LNCS, Vol. 10993), Hovav Shacham and Alexandra Boldyreva (Eds.). Springer, Heidelberg, 515--544. https://doi.org/10.1007/978-3-319-96878-0_18
[23]
Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. 2022. Efficient Registration-Based Encryption. Cryptology ePrint Archive, Report 2022/1505. https://eprint.iacr.org/2022/1505.
[24]
Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. In 19th ACM STOC, Alfred Aho (Ed.). ACM Press, 218--229. https://doi.org/10.1145/28395.28420
[25]
Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. One-Time Programs. In CRYPTO 2008 (LNCS, Vol. 5157), David Wagner (Ed.). Springer, Heidelberg, 39--56. https://doi.org/10.1007/978-3-540-85174-5_3
[26]
Rishab Goyal and Satyanarayana Vusirikala. 2020. Verifiable Registration-Based Encryption. In CRYPTO 2020, Part I (LNCS, Vol. 12170), Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, 621--651. https://doi.org/10.1007/978-3-030-56784-2_21
[27]
Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. 2020. New Constructions of Hinting PRGs, OWFs with Encryption, and More. In CRYPTO 2020, Part I (LNCS, Vol. 12170), Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, 527--558. https://doi.org/10.1007/978-3-030-56784-2_18
[28]
Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In EUROCRYPT 2016, Part II (LNCS, Vol. 9666), Marc Fischlin and Jean-Sé bastien Coron (Eds.). Springer, Heidelberg, 305--326. https://doi.org/10.1007/978-3-662-49896-5_11
[29]
Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for Bilinear Groups. In EUROCRYPT 2008 (LNCS, Vol. 4965), Nigel P. Smart (Ed.). Springer, Heidelberg, 415--432. https://doi.org/10.1007/978-3-540-78967-3_24
[30]
Pavel Hubacek and Daniel Wichs. 2015. On the Communication Complexity of Secure Function Evaluation with Long Output. In ITCS 2015, Tim Roughgarden (Ed.). ACM, 163--172. https://doi.org/10.1145/2688073.2688105
[31]
Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivious Transfers Efficiently. In CRYPTO 2003 (LNCS, Vol. 2729), Dan Boneh (Ed.). Springer, Heidelberg, 145--161. https://doi.org/10.1007/978-3-540-45146-4_9
[32]
Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. 2011. Efficient Non-interactive Secure Computation. In EUROCRYPT 2011 (LNCS, Vol. 6632), Kenneth G. Paterson (Ed.). Springer, Heidelberg, 406--425. https://doi.org/10.1007/978-3-642-20465-4_23
[33]
Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2008. Founding Cryptography on Oblivious Transfer - Efficiently. In CRYPTO 2008 (LNCS, Vol. 5157), David Wagner (Ed.). Springer, Heidelberg, 572--591. https://doi.org/10.1007/978-3-540-85174-5_32
[34]
Bargav Jayaraman, Hannah Li, and David Evans. 2017. Decentralized Certificate Authorities. CoRR, Vol. abs/1706.03370 (2017). showeprint[arXiv]1706.03370 http://arxiv.org/abs/1706.03370
[35]
Joe Kilian. 1988. Founding Cryptography on Oblivious Transfer. In 20th ACM STOC. ACM Press, 20--31. https://doi.org/10.1145/62212.62215
[36]
Vladimir Kolesnikov and Thomas Schneider. 2008. Improved Garbled Circuit: Free XOR Gates and Applications. In ICALP 2008, Part II (LNCS, Vol. 5126), Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz (Eds.). Springer, Heidelberg, 486--498. https://doi.org/10.1007/978-3-540-70583-3_40
[37]
Russell W. F. Lai, Giulio Malavolta, and Viktoria Ronge. 2019. Succinct Arguments for Bilinear Group Arithmetic: Practical Structure-Preserving Cryptography. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder, Xiao Feng Wang, and Jonathan Katz (Eds.). ACM Press, 2057--2074. https://doi.org/10.1145/3319535.3354262
[38]
Enrique Larraia. 2015. Extending Oblivious Transfer Efficiently - or - How to Get Active Security with Constant Cryptographic Overhead. In LATINCRYPT 2014 (LNCS, Vol. 8895), Diego F. Aranha and Alfred Menezes (Eds.). Springer, Heidelberg, 368--386. https://doi.org/10.1007/978-3-319-16295-9_20
[39]
Allison B. Lewko and Brent Waters. 2010. New Techniques for Dual System Encryption and Fully Secure HIBE with Short Ciphertexts. In TCC 2010 (LNCS, Vol. 5978), Daniele Micciancio (Ed.). Springer, Heidelberg, 455--479. https://doi.org/10.1007/978-3-642-11799-2_27
[40]
Willy Quach, Hoeteck Wee, and Daniel Wichs. 2018. Laconic Function Evaluation and Applications. In 59th FOCS, Mikkel Thorup (Ed.). IEEE Computer Society Press, 859--870. https://doi.org/10.1109/FOCS.2018.00086
[41]
Michael O. Rabin. 2005. How To Exchange Secrets with Oblivious Transfer. Cryptology ePrint Archive, Report 2005/187. https://eprint.iacr.org/2005/187.
[42]
Certicom Research. 2010. SEC 2: Recommended elliptic curve domain parameters. https://www.secg.org/sec2-v2.pdf [Online; Accessed on October 27, 2021].
[43]
Amit Sahai and Brent R. Waters. 2005. Fuzzy Identity-Based Encryption. In EUROCRYPT 2005 (LNCS, Vol. 3494), Ronald Cramer (Ed.). Springer, Heidelberg, 457--473. https://doi.org/10.1007/11426639_27
[44]
Peter Scholl. 2018. Extending Oblivious Transfer with Low Communication via Key-Homomorphic PRFs. In PKC 2018, Part I (LNCS, Vol. 10769), Michel Abdalla and Ricardo Dahab (Eds.). Springer, Heidelberg, 554--583. https://doi.org/10.1007/978-3-319-76578-5_19
[45]
Victor Shoup. 1997. Lower Bounds for Discrete Logarithms and Related Problems. In EUROCRYPT'97 (LNCS, Vol. 1233), Walter Fumy (Ed.). Springer, Heidelberg, 256--266. https://doi.org/10.1007/3-540-69053-0_18
[46]
Nigel Smart. 2020. Twitter thread: How many AND gates would there be in a combinatorial circuit for an elliptic curve point multiplication? https://twitter.com/SmartCryptology/status/1327280495978278914 [Online; @SmartCryptology].
[47]
Brent Waters. 2009. Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In CRYPTO 2009 (LNCS, Vol. 5677), Shai Halevi (Ed.). Springer, Heidelberg, 619--636. https://doi.org/10.1007/978-3-642-03356-8_36
[48]
Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended Abstract). In 23rd FOCS. IEEE Computer Society Press, 160--164. https://doi.org/10.1109/SFCS.1982.38
[49]
Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a Whole - Reducing Data Transfer in Garbled Circuits Using Half Gates. In EUROCRYPT 2015, Part II (LNCS, Vol. 9057), Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Heidelberg, 220--250. https://doi.org/10.1007/978-3-662-46803-6_8

Cited By

View all
  • (2024)Extractable Witness Encryption for KZG Commitments and Efficient Laconic OTAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0888-1_14(423-453)Online publication date: 10-Dec-2024

Index Terms

  1. Efficient Set Membership Encryption and Applications

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CCS '23: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security
    November 2023
    3722 pages
    ISBN:9798400700507
    DOI:10.1145/3576915
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 21 November 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. bilinear diffie-hellman
    2. laconic ot
    3. multiparty computation
    4. oblivious transfer
    5. set membership encryption

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    CCS '23
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,261 of 6,999 submissions, 18%

    Upcoming Conference

    CCS '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)670
    • Downloads (Last 6 weeks)57
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Extractable Witness Encryption for KZG Commitments and Efficient Laconic OTAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0888-1_14(423-453)Online publication date: 10-Dec-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media