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ABSTRACT

Intel Security Guard Extensions (SGX) have shown effectiveness
in critical data protection. Recent symbolic execution-based tech-
niques reveal that SGX applications are susceptible to memory
corruption vulnerabilities. While existing approaches focus on
conventional memory corruption in ECalls of SGX applications,
they overlook an important type of SGX dedicated vulnerability:
cross-boundary pointer vulnerabilities. This vulnerability is crit-
ical for SGX applications since they heavily utilize pointers to
exchange data between secure enclaves and untrusted environ-
ments. Unfortunately, none of the existing symbolic execution ap-
proaches can effectively detect cross-boundary pointer vulnerabili-
ties due to the lack of an SGX-specific analysis model that properly
handles three unique features of SGX applications: Multi-entry
Arbitrary-order Execution, Stateful Execution, and Context-aware
Pointers. To address such problems, we propose a new analysis
model named Global State Transition Graph with Context Aware
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Pointers (GSTG-CAP) that simulates properties-preserving execu-
tion behaviors for SGX applications and drives symbolic execution
for vulnerability detection. Based on GSTG-CAP, we build a novel
symbolic execution-based vulnerability detector named SymGX to
detect cross-boundary pointer vulnerabilities. According to our eval-
uation, SymGX can find 30 0-DAY vulnerabilities in 14 open-source
projects, three of which have been confirmed by developers. SymGX
also outperforms two state-of-the-art tools, COIN and TeeRex, in
terms of effectiveness, efficiency, and accuracy.
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• Security and privacy → Software and application security;
Vulnerability scanners; Trust frameworks.
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1 INTRODUCTION

Today, many projects have utilized Intel SGX to raise the security
bars on data confidentiality [7, 13, 38, 50, 56, 60, 67, 69, 76, 81]. Intel
SGX enables developers to create enclaves that protect sensitive
data in an isolated environment [30]. However, recent studies have
shown that ECalls, the interfaces for code from the untrusted world
to communicate with code inside SGX enclaves, are also vulnera-
ble to software vulnerabilities [11, 46, 71]. Symbolic execution has
been widely adopted in software security analysis [17, 39–42]. To
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ensure the security of SGX applications, researchers have devel-
oped several symbolic execution-based vulnerability detectors. For
example, TeeRex [18], Guradian [5], and COIN [48] utilize symbolic
execution to detect memory corruption inside enclaves. Although
these approaches have been effective in discovering multiple 0-
DAY vulnerabilities, they still miss critical types of vulnerabilities
in SGX applications. In particular, existing approaches are ineffec-
tive in detecting cross boundary pointer vulnerabilities, which allow
adversaries to access SGX-protected memory through a pointer
deliberately created in untrusted memory.

Since SGX applications heavily use pointers to exchange data
across the boundary of enclaves, cross boundary pointer vulnerabili-
ties are common in practice. In fact, many incidents related to cross
boundary pointer vulnerabilities have been reported [46, 61, 71].
However, effectively detecting cross boundary pointer vulnerabilities
remains a challenging problem. According to our evaluation, none
of the existing state-of-the-art solutions can effectively detect cross
boundary pointer vulnerabilities.

The main reason is that existing symbolic execution techniques
try to apply the execution and analysis model for conven-

tional programs to SGX applications, without following the
execution models of SGX applications. Compared to conventional
programs, SGX applications have a new execution model with three
unique properties as follows:

• Multi-entry Arbitrary-order Execution (P1): SGX applica-
tions assume that the adversary has full control of the un-
trusted world. Thus, unlike conventional applications, we
cannot consider SGX applications as single-entry programs.
Each ECall is an entry and the adversary can call multiple
ECalls in any order, leading to arbitrary-order execution.

• Stateful Execution (P2): ECalls may not be independent from
each other. They can share the same set of global states
(global variables and heap variables) in the enclave. Thus,
the execution of an ECall might show different execution
behaviors before and after running another ECall if the latter
modifies the global states.

• Context-aware Pointers (P3): the untrusted environment
often communicates with enclaves through pointer parame-
ters of ECalls. However, to ensure the security of enclaves,
SGX should carefully check if pointers originating from the
untrusted world indeed point to any addresses in enclaves.
Thus, the pointers in SGX applications are context-aware.

Unfortunately, existing approaches cannot properly address the
three unique properties, leading to ineffective and inefficient de-
tection of cross-boundary pointer vulnerabilities. Specifically, we
observe that they suffer from the following limitations.

First, the absence of multi-entry arbitrary-order execution mod-
eling leads to ineffective detection of complex vulnerabilities. For
example, one of the state-of-the-art tools, TeeRex [18], assumes
that ECalls are independent, which is not accurate for SGX appli-
cations. Therefore, TeeRex cannot capture complex vulnerabilities
that involve multiple ECalls. Another recent tool, COIN [48], brute-
forcibly enumerates ECall sequences to simulate a multi-entry SGX
application. However, this approach has low efficiency due to quick
path explosion. In our evaluation, COIN failed to find vulnerabilities
within the time budget for 64% of times.

Second, without tracking how ECalls modify global states, exist-
ing approaches may introduce a great many false positives. TeeRex
assumes that all values from global states are free symbolic values.
However, since a global state can only be modified from a preced-
ing state by ECalls, the conservative assumption made by TeeRex
can cause many false positives. COIN creates ECall sequences and
retains successive global states in executing the sequenced ECalls.
However, since COIN enumerates ECall sequences rather than track-
ing modifications to global states, COIN is incapable of leveraging
internal information flow for effective sequence generation.

Third, ignoring context-aware pointersmakes existing approaches
fail to accurately model the semantics of the SGX sanitizers like
𝑠𝑔𝑥_𝑖𝑠_𝑤𝑖𝑡ℎ𝑖𝑛_𝑒𝑛𝑐𝑙𝑎𝑣𝑒 and 𝑠𝑔𝑥_𝑖𝑠_𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑒𝑛𝑐𝑙𝑎𝑣𝑒 , which are crit-
ical to ensure the security of SGX applications. TeeRex handles
the semantics of the sanitizers by tracking the origins of pointers.
However, TeeRex does not have the capability to reason about re-
lations between the enclave bounds and pointers with complex
computation. Thus, given a pointer that points to a segment of
memory, TeeRex cannot tell whether the memory segment can
cross the boundary of enclaves, leading to a substantial amount of
false positives. Meanwhile, COIN does not model the semantics of
the intrinsic functions at all.

To address these problems, we propose a new tool SymGX that
detects cross-boundary pointer vulnerabilities in SGX applications.
Our key insight is that we need a specific analysis model for SGX
applications, instead of applying a conventional analysis model
directly. However, building such a specific analysis model is chal-
lenging, because there are no effectivemethods to simulate the three
unique properties of SGX. To this end, we propose the GSTG-CAP
model that handles the three unique properties of SGX applica-
tions effectively. Our model is based on a Global State Transition
Graph (GSTG), which is a graph that models how ECalls interact
with each other by tracking changes to global states. Walking on the
graph model helps to model the multi-entry arbitrary-order execu-
tion and the stateful execution properties. In addition to the GSTG,
our model also includes a Symbolic Execution with Context-Aware
Pointers (SECAP) that processes context-aware pointers properly.
In this way, our GSTG-CAP models the behavior of an SGX appli-
cation accurately, enabling effective detection of cross-boundary
pointer vulnerabilities.

We evaluated SymGX against TeeRex [18], and COIN [48], with
real-world open-source projects and known CVE vulnerabilities.
Our evaluation shows that SymGX can discover 30 new vulnera-
bilities in 14 open-source projects from GitHub, while TeeRex and
COIN detected only ten and six vulnerabilities, respectively. We
have reported the discovered vulnerabilities to the project devel-
opers and have already received confirmations for three 0-DAY
vulnerabilities in two open-source projects. For known vulnerabili-
ties in the Microsoft Open Enclave SDK and Google Asylo, SymGX
detected all 13 vulnerabilities within 22 minutes. In contrast, TeeRex
detected only six vulnerabilities, and COIN detected only one vul-
nerability. Our evaluation also shows that SymGX achieved 12.28%
and 19.28% higher code coverage than TeeRex and COIN, respec-
tively, thanks to the code-coverage-guided search strategy in ECall
sequence generation. Overall, our evaluation demonstrates that
SymGX is superior in detecting cross boundary pointer vulnerabili-
ties than state-of-the-art solutions.
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Figure 1: The structure of an SGX application.

To conclude, we make the following contributions in this paper:
• We have developed a new detector SymGX based on symbolic
execution for the cross boundary pointer vulnerabilities, a
critical security problem that occurs at the data-exchange
boundary of SGX applications.

• We build a novel analysis model GSTG-CAP for SGX applica-
tions that accurately handles their three unique properties:
Multi-entry Arbitrary-order execution, Stateful Execution,
and Context-aware Pointers.

• We have evaluated SymGX on open-source projects and
known CVEs in industry-class projects. SymGX discovered
30 new 0-Day vulnerabilities and three have been confirmed
by developers.

SymGX is available at: https://github.com/PKU-ASAL/WASEM.

2 BACKGROUND AND MOTIVATION

In this section, we provide the background of Intel Software Guard
Extensions (SGX) [30–32, 45]. Next, we use sample code snippets to
illustrate insecure memory accesses in an SGX application. More-
over, we explain the limitations of existing sanitizers in SGX SDK
and the limitations of other symbolic execution techniques.

2.1 Software Guard Extensions (SGX)

Intel SGX is a hardware-based solution that protects sensitive data
in critical applications from strong adversaries, such as the host OS
or DevOps staff [4, 55]. Figure 1 illustrates the programming model
of an SGX software application, which consists of two worlds: a
trusted enclave inside a protected memory region and an untrusted
environment on the host machine. The untrusted environment can-
not access the memory region in the enclave directly, ensuring the
isolation of the enclave from the untrusted world.

The Intel SGX SDK [78] provides software interfaces for data-
exchange between the enclave and the untrusted world: Enclave
Call (ECall) and Outside Call (OCall). These interfaces allow the
untrusted world to invoke ECalls to communicate with the enclave,
and the enclave to issue OCalls to the untrusted world. Developers
must declare all ECalls and OCalls in the Enclave Description Lan-
guage (EDL) file. The SGX SDK then generates a wrap function for

each ECall and OCall to verify the arguments and return values,
transfer data, and switch the control flow.

1 enclave {
2 ...
3 // define ECALLs
4 trusted {
5 public int ecall_create_wallet(
6 [in, string]const char* master_password
7 );
8 public int ecall_show_wallet(
9 [in, string]const char* master_password,
10 [out, size=wallet_size] wallet_t* wallet,
11 size_t wallet_size
12 );
13 ...
14 };
15 };
16

Listing 1: A sample EDL file from sgx_wallet.

We present a sample EDL file from an application sgx_wallet in
Listing 1. Each variable in the file begins with a pair of brackets
that contain several describers, which have the following meanings:

• [𝑖𝑛/𝑜𝑢𝑡] indicates the direction of data transfer between the
caller and the callee.

• [𝑠𝑖𝑧𝑒 = 𝑐𝑛𝑡] specifies the number of elements in a buffer.
• [𝑠𝑡𝑟𝑖𝑛𝑔] denotes that the content is a string.
• [𝑢𝑠𝑒𝑟_𝑐ℎ𝑒𝑐𝑘] implies that developers are fully responsible
for managing the pointer.

For example, the argument master_password of ecall_create_wallet
at line 5 has the describers [𝑖𝑛, 𝑠𝑡𝑟𝑖𝑛𝑔]. This means that the SGX
SDK will verify if the corresponding string is outside the enclave,
allocate a buffer inside the enclave, copy the string into the buffer
before ECall execution, and assign the buffer address to ECall argu-
ment.

2.2 Cross-Boundary Pointer Vulnerabilities

Previous studies havewitnessed a growing number of cross-boundary
pointer vulnerabilities that enable adversaries to compromise SGX-
protected memory by crafting a malicious pointer in the untrusted
memory [46, 61, 71]. Despite their importance, effectively detect-
ing cross-boundary pointer vulnerabilities with symbolic analysis
techniques is still very difficult. State-of-the-art techniques, such as
TeeRex [18], COIN [48], sgxfuzz [19], and Guardian [5], are more
effective in detecting target conventional memory-safety vulnerabil-
ities in enclaves. However, these recent techniques are insufficient
for detecting cross-boundary pointer vulnerabilities.

We classify cross-boundary pointer vulnerabilities into two cat-
egories: the direct cross-boundary pointers (𝑉1) and the indirect
cross-boundary pointers (𝑉2). The former (𝑉1) occurs when the at-
tacker passes a pointer from the untrusted world that points to an
address inside the enclave. The latter (𝑉2) occurs when the attacker
indirectly manipulates a pointer within the enclave to access the
SGX-protected memory.
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Listing 2 illustrates an example of 𝑉1, which enables the adver-
sary to write to any address in the enclave. The ECall function sim-
ple_encrypt, defined at line 6, has one parameter encrypted marked
by user_check, indicating that the SGX SDK will not verify the va-
lidity of the pointer encrypted. Therefore, in this case, the adversary
can assign any memory address in the enclave to encrypted. As a
result, the code at line 18 will write a char that is declared in the
global variable book at line 24 to the address pointed by encrypted[i].

1 //Enclave.edl
2 // msg is a safe pointer, SGX SDK will automatically
3 // check msg and move it to enclaves. encrypted is an
4 // unsafe pointer (decorated by user_check]) that the
5 // adversary controls
6 void simple_encrypt([in, size=len] char *msg,
7 [user_check] char* encrypted, unsigned len);
8

9 //Enclave.cpp
10 char book[10] = {52, 48, 55, 51, 56, 54, 50, 49, 57, 53};
11 //Attackers set encrypted to an enclave memory address.
12 void simple_encrypt(char *msg, char* encrypted,
13 unsigned len) {
14 if (!msg || !encrypted || len<=0 || len>10)
15 return;
16

17 for (unsigned i = 0; i < len; ++i) {
18 if (msg[i]<48 || msg[i]>57)
19 return;
20 // if (!sgx_is_outside_enclave(encrypted + i,
21 // sizeof(char)))
22 // exit();
23 // a possible fix with intrinsic functions
24 encrypted[i] = book[msg[i]-48];
25 // arbitrary write to addresses in enclaves
26 }
27 }

Listing 2: The sample code of unprotected pointers (𝑉1).

Listing 3 shows an example of𝑉2, which enables the adversary to
access confidential data from within enclaves. In this scenario, the
adversary has manipulated the variable cnt so that he can provide
a large cnt that surpasses the array boundary of meta at line 9, and
exposes the data in secrete through memcpy.

2.3 Inadequacy of Sanitizers and Analyzers

The SGX SDKprovides two functions, 𝑠𝑔𝑥_𝑖𝑠_𝑤𝑖𝑡ℎ𝑖𝑛_𝑒𝑛𝑐𝑙𝑎𝑣𝑒 (𝑝, 𝑠𝑖𝑧𝑒)
and 𝑠𝑔𝑥_𝑖𝑠_𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑒𝑛𝑐𝑙𝑎𝑣𝑒 (𝑝, 𝑠𝑖𝑧𝑒), to help developers verify the
location of a pointer p. These functions return true if the memory
region starting at p and spanning size bytes is entirely inside or
outside the enclave, respectively. Figure 2 illustrates how these
functions operate on an example. Using these functions can pre-
vent some vulnerabilities. For example, by checking lines 20-22 in
Listing 2, developers can avoid the 𝑉1 vulnerability.
2.3.1 Inadequacy of Sanitizers. Unfortunately, the two sanitizers
are prone to get misused, impeding the effective prevention of
cross-boundary pointer vulnerabilities. Listing 4 shows an example

1 //Enclave.edl
2 // cnt is an offset controlled by the attacker
3 void ecall_copy_information([out, count=cnt] int* ptr,
4 unsigned cnt);
5

6 //Enclave.cpp
7 void ecall_copy_information(int *ptr, unsigned cnt) {
8 int meta[8] = {0, 1, 2, 3, 4, 5, 6, 7};
9 int secret[8] = {1, 2, 3, 4, 5, 6, 7, 8};
10 //Attacker set cnt > meta size to steal secret
11 memcpy(ptr, meta, sizeof(int) * cnt);
12 }

Listing 3: The sample code of unprotected array indices (𝑉2).

Virtual Memory Space

sgx_is_within_enclave(PA, SizeA) = False 
sgx_is_outside_enclave(PA, SizeA) = True

sgx_is_within_enclave(PB, SizeB) = True 
sgx_is_outside_enclave(PB, SizeB) = False

sgx_is_within_enclave(PC, SizeC) = False 
sgx_is_outside_enclave(PC, SizeC) = False

B

A

C

En
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av
e

Figure 2: The usage of SGX SDK sanitizer functions,

𝑠𝑔𝑥_𝑖𝑠_𝑤𝑖𝑡ℎ𝑖𝑛_𝑒𝑛𝑐𝑙𝑎𝑣𝑒 and 𝑠𝑔𝑥_𝑖𝑠_𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑒𝑛𝑐𝑙𝑎𝑣𝑒.

of how inappropriate usage of sanitizers can lead to information
leakage. There are two ECalls ecall_store_msg and ecall_load_msg
in Listing 4. The former allows developers to save a message to
the enclave and the latter loads messages out from the enclave. In
this case, since the pointer of the message 𝑝 is from the untrusted
world, it should not point to addresses in enclaves. Therefore, in
ecall_store_msg and ecall_load_msg, the developer adds the sani-
tizers at line 11 and line 19 to ensure the security of 𝑝 . However,
the developer mistakenly writes the !(sgx_is_outside_enclave(p, len*
sizeof(int))) at line 11 into sgx_is_within_enclave(p, len* sizeof(int)),
allowing adversaries to bypass the check. An authentic example
of this vulnerability can be discerned in Microsoft’s Confidential
Consortium Framework (CCF) [1]. Specifically, the adversary can set
𝑙𝑒𝑛 as a large number that makes 𝑝 [𝑙𝑒𝑛] exceed the memory bound
of the target enclave. This setting makes 𝑝 points to a memory
segment like 𝐶 in Figure 2 that lies across the boundary of an en-
clave. Since sgx_is_within_enclave only returns true if the checked
memory segment is fully in enclaves, the check at line 11 will be
bypassed. To this end, the adversary can specify 𝑝 to an address
within the enclave and copy it to the global variable𝑚𝑠𝑔 at line
16. Finally, the adversary can steal the information out from the
enclave by calling ecall_load_msg, a fully correct program.
2.3.2 Existing Analyzers for Listing 4. The vulnerability in Listing 4
is extremely challenging for existing symbolic execution-based ana-
lyzers. For example, TeeRex does not support context-aware point-
ers. Therefore, its analysis engine cannot accurately simulate the be-
haviors of both 𝑠𝑔𝑥_𝑖𝑠_𝑤𝑖𝑡ℎ𝑖𝑛_𝑒𝑛𝑐𝑙𝑎𝑣𝑒 and 𝑠𝑔𝑥_𝑖𝑠_𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑒𝑛𝑐𝑙𝑎𝑣𝑒 .
The consequence of lacking context-aware pointers support is that,
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1 //Enclave.edl
2 void ecall_store_msg([user_check]int *p, int len);
3 void ecall_load_msg([user_check]int *p, int len);
4 //Enclave.c
5 int *g1 = NULL, *g2 = NULL;
6 int l = 0, msg_len = 0;
7 int keys = [0,1,2,3,4];
8 char *msg = NULL;
9

10 void ecall_store_msg(char *p, int len){
11 if(len <= 0 || (sgx_is_within_enclave(p,
12 len * sizeof(int))))
13 exit();
14 msg = malloc(len+1);
15 msg_len = len;
16 memcpy (msg, p, len);
17 }
18 void ecall_load_msg(char *p, int len){
19 if(len <= 0 || (!sgx_is_outside_enclave(p,
20 len * sizeof(int))))
21 exit();
22 if (len < msg_len + 1)
23 exit();
24 memcpy(p, msg, msg_len);
25 }

Listing 4: An example to show the research challenges.

at line 24 in Listing 4, TeeRex cannot determine whether the mem-
ory segment starting at 𝑝 with a size of 𝑙𝑒𝑛 is completely outside of
the enclave. Therefore, it conservatively assumes that the𝑚𝑒𝑚𝑐𝑝𝑦

at line 24 is vulnerable since 𝑝 is a pointer from the untrusted world.
However, this is a false positive because the developer has already
ensured that 𝑝 is safe at line 20 by calling sgx_is_outside_enclave.
COIN also suffers from the lack of context-aware pointers. For in-
stance, it will miss all 𝑉1 vulnerabilities (e.g., the one at line 24 in
Listing 2) due to its inherent design that prevents its analyzer from
distinguishing where a pointer originates from.

We then summarize the application scope of existing tools w.r.t𝑉1
and𝑉2. TeeRex cannot detect𝑉2 because it doesn’t have information
about buffer size. COIN cannot detect𝑉1 because it does not analyze
untrusted data flow and SGX-specific memory. Guardian misses
most of 𝑉1 and all the 𝑉2 because it only checks the violation of
memory range in SDKs. Guardian does not perform taint analysis
or buffer analysis.

3 OUR APPROACH

This section presents the core components of SymGX. We start by
introducing the threat model and the challenges that SymGX tries
to resolve. Then, we explain the underlying GSTG-CAP model that
handles the execution properties of SGX applications. Next, we dis-
cuss how SymGX walks the graph and performs fine-grained taint
analysis on data flows. Finally, we describe how SymGX identifies
vulnerabilities in SGX applications.

3.1 Threat Model and Research Challenges

We adopt the same threat model as TeeRex [18], which assumes
that enclaves protect data from adversaries. We also assume that an
adversary can access arbitrary memory addresses and execute any
combination of ECalls in the untrusted world. Our approach focuses
on cross-boundary pointer vulnerabilities that are specific to SGX
applications. We do not address other memory safety-related vul-
nerabilities that may affect SGX applications, as they are orthogonal
to the interest of this work.

Based on the threat model, we aim at addressing the following
research challenges in SymGX:

• Challenge 1 (C1): How to model the multi-entry arbitrary-
order execution behaviors of SGX applications?

• Challenge 2 (C2): How to track inter-ECall information
flows through global states?

• Challenge 3 (C3): How to handle context-aware pointers
in symbolic execution?

3.2 The GSTG-CAP Model

Overall, we address the challenges by constructing an analysis
model named Global State Transition Graph with Context Aware
Pointers (GSTG-CAP). For C1, we represent ECalls as edges in the
Global State Transition Graph (GSTG). This design enables SymGX
to generate diverse ECalls sequences by performing random walks
with restarts on the graph, simulating the multi-entry and arbitrary-
order ECall executions. For C2, we let each node in GSTG act as a
unique SGX program global state. Thus, while randomly walking
on the GSTG, the updates to the relevant nodes naturally track
the inter-ECall information flow through global states. For C3, we
develop a Boundary-Aware Memory Model (BAMM) inside the
symbolic executor to handle context-aware pointers during ECall
sequence execution and perform vulnerability detection.

Figure 3 illustrates GSTG-CAP that consists of two components,
GSTG and the SECAP. The nodes in GSTG represent states of global
and heap variables, and the edges are ECalls that get symbolically
executed by the SECAP. We analyze the execution of an SGX appli-
cation with random walks from the initial state ð0 in GSTG.

3.2.1 Global State Transition Graph. To formally define a GSTG,
we assume, without loss of generality, that there are 𝑛 global or
heap variables in total, denoted by a vector 𝑉 =< 𝑣0, 𝑣1 ..., 𝑣𝑛 >. A
global state ð𝑖 is then a vector of symbolic expressions over 𝑉 , i.e.,
ð𝑖 =< 𝑣𝑒0 , 𝑣

𝑒
1 , ..𝑣

𝑒
𝑛 >, where 𝑣𝑒

𝑖
is the symbolic value of 𝑣𝑖 . Given a

global state ð𝑖 , an ECall 𝑒𝑖 is a function that transforms it into a
new global state ð′

𝑖
.

G = (𝑁, ð0, 𝐸) (1)

We leverage the above definitions to formulate GSTG, as shown
in Equation 1. In this formulation, ð𝑖 ∈ 𝑁 denotes a node in the
graph that corresponds to a global state and ð0 is a special node
that presents the initial global state, which is statically determined
when an SGX application is initialized. Note that a GSTG might
be an infinite graph and we strategically explore a subset of the
graph. A transition 𝑒𝑖 ∈ 𝐸 in the GSTG represents an ECall executed
symbolically with context-aware pointers.
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Figure 3: SymGX – The architecture, the main components, and the workflow

3.2.2 Symbolic Execution with Context-Aware Pointers. SECAP is
responsible for executing ECalls and its execution forms direc-
tional edges between GSTG nodes. The new component in SECAP
is the BAMM memory model, which enables SymGX to reason
SGX context-aware pointers. We formalize BAMMmodel as a tuple
𝑀𝐸𝑀 = (𝑈 , 𝑃) that consists of a set of untrusted addresses 𝑈 and
a set of trusted addresses 𝑃 . Each element in 𝑈 or 𝑃 is a range
of memory addresses. Regarding the programming model of SGX,
there is no overlap between the untrusted and the SGX-protected
memory. Moreover, the union of 𝑈 and 𝑃 covers the whole sup-
ported memory address space. In other words, we partition the
memory space of an SGX application under symbolic execution
into two disjoint sets of 𝑈 and 𝑃 .

We define a set of basic memory operations, namely +,−, 𝑙𝑜𝑎𝑑,
store,malloc, free over the BAMM. In particular, + and − are pointer
arithmetic operators that increment or decrement a pointer. The
standard semantics of the memory operations apply to memory
addresses in 𝑆 . For addresses in 𝑈 , we assume that an adversary
can arbitrarily manipulate the memory in the untrusted world.
Therefore, we let addresses in𝑈 always be fresh symbolic values.
This simplification for 𝑈 can improve the efficiency of SymGX.
For instance, a load operation on untrusted memory returns a free
symbolic variable with a taint indicating it is insecure. We present
the details of assigning taints to symbolic variables in Section 3.5.

One of the main challenges in modeling memory operations is
to accurately model pointer arithmetic operations, + and −. These
operations must not result in buffer overflows that could lead to𝑉2.
For instance, the pointer arithmetic at line 6 in Listing 5 may cause
a buffer overflow and expose sensitive information. The BAMM
ensures that the buffer overflow can be detected once it happens.

To model + and − operations accurately, our BAMM keeps track
of the original base address and buffer size of a pointer when it is
allocated. This helps us detect potential buffer overflows if pointer
arithmetic modifies the pointer. Specifically, for each pointer 𝑝 ,
we associate it with two attributes, 𝑜_𝑏𝑎𝑠𝑒 and 𝑜_𝑙𝑒𝑛, representing
its original base address and size, respectively. Whenever pointer
arithmetic changes 𝑝 , SymGX compares the new address of the

pointer to its original base address and size to detect buffer overflow.
An SMT solver performs this comparison.

1 void ecall_get_by_index(int *ptr, int index) {
2 int meta[8] = {0, 1, 2, 3, 4, 5, 6, 7};
3 int secret[8] = {1, 2, 3, 4, 5, 6, 7, 8};
4 int *tmp = meta;
5 for(i = 0; i < index; ++i)
6 ptr[i] = meta++;
7 }

Listing 5: The sample code of pointer arithmetic.

3.2.3 Intrinsic Function. We design two new intrinsic functions
in our Boundary-Aware Memory Model memory model. The first
function 𝑠𝑦𝑚𝑔𝑥_𝑖𝑠_𝑤𝑖𝑡ℎ𝑖𝑛_𝑡𝑟𝑢𝑠𝑡𝑒𝑑 (𝑃, size) checks whether a mem-
ory object 𝑃 with size size is inside the SGX-protected memory.
Likewise, the second function 𝑠𝑦𝑚𝑔𝑥_𝑖𝑠_𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑡𝑟𝑢𝑠𝑡𝑒𝑑 (𝑃, size)
checks if the memory object sits outside the enclave memory. The
semantics of these functions are consistent with their counterparts
in the SGX SDKs. However, we extend their functionality to let
them fit BAMM and accept symbolic parameters.

Note that we borrow the name of the two intrinsic functions
from the Intel SGX SDK [78]. However, they are essential for
all SDKs of SGX. For Asylo [20], they are 𝐼𝑠𝐼𝑛𝑠𝑖𝑑𝑒𝐸𝑛𝑐𝑙𝑎𝑣𝑒 and
𝐼𝑠𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝐸𝑛𝑐𝑙𝑎𝑣𝑒 . For OpenEnclave [29], these two funcions are
𝑜𝑒_𝑖𝑠_𝑖𝑛𝑠𝑖𝑑𝑒_𝑒𝑛𝑐𝑙𝑎𝑣𝑒 and 𝑜𝑒_𝑖𝑠_𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑒𝑛𝑐𝑙𝑎𝑣𝑒 . These functions
have similar parameters and return values. Thus, they can map to
𝑠𝑦𝑚𝑔𝑥_𝑖𝑠_𝑤𝑖𝑡ℎ𝑖𝑛_𝑡𝑟𝑢𝑠𝑡𝑒𝑑 and 𝑠𝑦𝑚𝑔𝑥_𝑖𝑠_𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑡𝑟𝑢𝑠𝑡𝑒𝑑 .

Function symgx_is_within_trusted (P, Size) can return one of three
possible values: True, False, orUnknown. Returning Truemeans that
the memory segment [𝑃, 𝑃 + 𝑠𝑖𝑧𝑒] is entirely contained within an
enclave. Return value False means that the memory segment [𝑃, 𝑃 +
𝑠𝑖𝑧𝑒] is entirely outside of any enclave. The value Unknown means
that symgx_is_within_trusted cannot determine whether the mem-
ory segment [𝑃, 𝑃 + 𝑠𝑖𝑧𝑒] is fully inside or outside of an enclave, im-
plying both cases are possible. Function symgx_is_outside_trusted
has a similar usage except that it checks whether the memory
segment [𝑃, 𝑃 + 𝑠𝑖𝑧𝑒] is completely outside of any enclave.
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We use SMT solver as the backend reasoner for both functions.
Given a symbolic variable 𝑃 , a symbolic variable 𝑆𝑖𝑧𝑒 , and an
enclave ranges from 𝑏

𝑝

𝑖
to 𝑒

𝑝

𝑖
, we first compute two clauses for

each predicate: 𝐶1 : (𝑃 ≥ 𝑏
𝑝

𝑖
) ∧ (𝑃 + 𝑠𝑖𝑧𝑒 ≤ 𝑒

𝑝

𝑖
) and 𝐶2 : (𝑃 <

𝑏
𝑝

𝑖
) ∨ (𝑃 + 𝑠𝑖𝑧𝑒 > 𝑒

𝑝

𝑖
) for symgx_is_within_trusted; and 𝐶3 : (𝑃 +

𝑠𝑖𝑧𝑒 ≤ 𝑏
𝑝

𝑖
) ∨ (𝑃 ≥ 𝑒

𝑝

𝑖
) and 𝐶4 : (𝑃 + 𝑠𝑖𝑧𝑒 > 𝑏

𝑝

𝑖
) ∧ (𝑃 < 𝑒

𝑝

𝑖
)

for symgx_is_outside_trusted. Then we check the satisfiability of
these clauses as follows: (1) if 𝐶1 is SAT and 𝐶2 is UNSAT then
symgx_is_within_trusted returns True; it returns False if 𝐶1 is UN-
SAT and 𝐶2 is SAT; and it returns Unknown if both 𝐶1 and 𝐶2 are
SAT. (2) Similarly, symgx_is_outside_trusted returns 𝑇𝑟𝑢𝑒 if 𝐶3 is
SAT and 𝐶4 is UNSAT; it returns False if 𝐶3 is UNSAT or Unknown
and 𝐶4 is SAT; and it returns Unknown if both 𝐶3 and 𝐶4 are SAT1.

3.3 The Architecture of SymGX

We developed a new symbolic executor based on the GSTG-CAP
model to detect cross-boundary pointer vulnerabilities, as shown
in Figure 3. SymGX takes in the source code of an SGX app and
outputs a vulnerability report using the GSTG-CAP analysis model.
It builds a GSTG to model ECall interactions and simulates exe-
cution as random walks with restarts on the GSTG. Our SymGX
framework uses SECAP to analyze transitions between nodes in
GSTG. SECAP builds on classic symbolic executors but with the
new memory model of BAMM for SMT-based reasoning of context-
aware pointers. It interprets instructions with symbolic values and
maintains program symbolic states. Forked states may have con-
straints added, and executed instructions are recorded for analysis.
Program paths are viewed as sets of visited basic block pairs.

Based on the GSTG-CAPmodel, SymGX incorporates a coverage-
guided random-walk strategy on GSTG to simulate the generation
of sequences of ECalls to an SGX application. Moreover, SymGX
owns a fine-grained taint dataflow analyzer that can differentiate
between the two types of cross-boundary pointer vulnerabilities and
a specialized detector for effective vulnerability identification. Note
that we will focus on the new features of SymGX and omit the
normal behavior of SymGX as a symbolic executor.

3.4 Code Coverage-guided Graph Random Walk

with Restart

SymGX starts its analysis by doing random walks from the initial
state ð0 in GSTG-CAP. A purely random approach is inefficient
for two reasons: (1) it may explore limited paths in GSTG and (2)
GSTG may have infinitely many nodes. To address the first issue,
we assign a restart probability 𝑝𝑟 to the random walk. Therefore,
in each step, SymGX has the potential to return to the initial state.
For the second issue, we design a code coverage-guided algorithm
to improve the efficiency of SymGX.

Algorithm 1 presents the code coverage-guided random walk
algorithm. SymGX starts by creating a priority queue 𝑝𝑟𝑖𝑜_𝑞𝑢𝑒𝑢𝑒
that contains the initial state ð0 and a priority function A𝑟 (lines
1-2). Then SymGX explores the graph in a while loop (lines 4-16). At
each iteration of the loop, SymGX constructs the path that reaches
the current node. This path consists of a sequence of edges that

1the SMT solver may not finish solving the constraints within time limits. In this case,
we consider the constraints UNSAT

Algorithm 1: Code coverage Guided Random Walk with
Restart
Input :G𝑠𝑡𝑎𝑡𝑒
Output :ECall Sequences

1 ð0 .𝑝𝑎𝑡ℎ = {ð0}
2 𝑝𝑟𝑖𝑜_𝑞𝑢𝑒𝑢𝑒 = 𝑖𝑛𝑖𝑡 (A𝑟 , ð0)
3 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = ∅
4 while 𝑝𝑟𝑖𝑜_𝑞𝑢𝑒𝑢𝑒 ≠ ∅ do

5 𝑐𝑢𝑟𝑟𝑒𝑛𝑡=𝑝𝑟𝑖𝑜_𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 ()
6 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑐𝑢𝑟𝑟𝑒𝑛𝑡}
7 yield 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑝𝑎𝑡ℎ

8 for each ECall 𝑒 ∈ 𝐸 do

9 𝑛𝑒𝑥𝑡=𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
10 𝑛𝑒𝑥𝑡 .𝑝𝑎𝑡ℎ=𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑝𝑎𝑡ℎ ∪ {𝑛𝑒𝑥𝑡}
11 if not A𝑝 (𝑛𝑒𝑥𝑡) then
12 𝑝𝑟𝑖𝑜_𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ(𝑛𝑒𝑥𝑡)
13 end

14 end

15 Restart with probability 𝑝𝑟

16 end

17 return G𝑠𝑡𝑎𝑡𝑒

corresponds to a valid ECall sequence (line 7). To enable yielding
paths, we store a field 𝑝𝑎𝑡ℎ for each node. 𝑛.𝑝𝑎𝑡ℎ records all the
nodes on the path from ð0 to 𝑛. We update the field of 𝑝𝑎𝑡ℎ for each
node at line 1 and line 10. When SymGX examines the successors of
the current node, it eliminates redundant successors with a pruning
function A𝑝 (line 11).

We now describe the priority function A𝑟 and the pruning func-
tion A𝑝 in Algorithm 1. To do so, we introduce three essential
concepts. First, for a node 𝑛, we define B𝑐𝑛 as the set of code basic
blocks that are covered by any ECall on the edges of 𝑛.𝑝𝑎𝑡ℎ. Next,
we define P𝑒 =

⋃
𝑛 𝑗 ∈𝑣𝑖𝑠𝑖𝑡𝑒𝑑 B

𝑐
𝑛 𝑗

as the set of code basic blocks that
are covered by any node in the 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 set (see Algorithm 1) during
the current graph traversal iteration. Finally, we define P𝑒/B𝑐𝑛 𝑗

as
the set of code basic blocks that are newly covered by symbolically
executing the ECalls on 𝑛 𝑗 .𝑝𝑎𝑡ℎ.

A𝑟 is a scoring function that takes a node𝑛 𝑗 from the global tran-
sition graph and assigns it a value for the priority queue. The idea
is to prioritize the ECalls that are likely to explore new code basic
blocks and discourage the ones that are too long. SymGX calculates
the score for A𝑟 using Equation 2. In particular, |P𝑒/B𝑐𝑛 𝑗

| is the
number of newly discovered code basic blocks. 𝑙𝑒𝑛(𝑛 𝑗 .𝑝𝑎𝑡ℎ) calcu-
lates the length of 𝑛 𝑗 .𝑝𝑎𝑡ℎ and we penalize longer ECall sequences
to avoid inefficient path exploration.

𝑠𝑐𝑜𝑟𝑒 = |P𝑒/B𝑐𝑛 𝑗
| − 𝑙𝑒𝑛(𝑛 𝑗 .𝑝𝑎𝑡ℎ) . (2)

The functionA𝑝 takes a node 𝑛 𝑗 as input and returns true if and
only if P𝑒/B𝑐𝑛 𝑗

= ∅. This function is used to eliminate the ECall
paths that do not cover any new code basic blocks.

3.5 Fine-grained Taint Dataflow Analyzer

This component distinguishes the vulnerability 𝑉1 from 𝑉2. We
make this distinction based on the observation that 𝑉1 poses more
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Table 1: Description of Attributes

Attributes Description

taint whether the variable may be controlled by adversary
pointer whether the variable is a memory address
taint_base whether the base pointer is controlled by adversary

Table 2: Initial attributes for inner values

Element Taint Pointer Base_taint

Constant Number F F Null
Local Pointer F T F
Global Pointer F T F
ECallArguments T T/F T/Null
OCallReturns T T/F T/Null
Null Pointers F T F
Untrusted Memory Values T T/F T/Null
Lib function Returns F T/F F/Null

risks than 𝑉2. 𝑉1 enables the attacker to manipulate a base pointer,
resulting in arbitrary read/write in enclaves. In contrast, 𝑉2 only
permits attacker-controlled indexes. As long as there is no buffer
overflow, the damage of𝑉2 is limited. By differentiating𝑉1 from𝑉2,
we can reduce false positives by reasoning about whether the array
index may cause overflow for 𝑉2.

To conduct a fine-grained analysis, we assign a set of attributes
to each variable that capture different properties. In particular, we
devise three attributes: taint, pointer and base_taint, as shown
in Table 1. The taint attribute indicates whether the variable can
be influenced by the adversary (either by manipulating the base
pointer or the offset). The pointer attribute indicates whether the
variable is a memory address. The base_taint attribute indicates
whether the base pointer is under the adversary’s control. If taint
and base_taint are both True, the attacker can control the base
pointer (𝑉1). If taint is True and base_taint is False, the attacker
can control the address offset (𝑉2).

We now explain how each attribute is assigned a value. There are
eight kinds of immediate sources of values in SymGX, as shown in
Table 2. Lib functions are the standard library functions in SGX SDK
that we emulate. The taint attribute is set to be True only for vari-
ables that come from one of the three taint sources, namely, ECall
arguments, OCall return values, and untrusted memory values. Oth-
erwise, taint is set to be False. The pointer attribute is set to be
True for the following cases: local pointers, global pointers, Null
pointers, lib function returns of pointer type, ECall arguments of
pointer type, OCall returns of pointer type, and untrusted memory
addresses of pointer type. The type information can be determined
at compile time. We do not consider fixed-address pointers because
we assume that SGX programs follow the pointer rules of C stan-
dard. The pointer attribute is set to be False for other variables.
For base and base_taint attributes, they are set to NULL when
pointer is False, because the variable is not a memory address.
If pointer is True, the base_taint attribute is assigned the same
value as the taint attribute.

Algorithm 2 presents the taint propagation algorithm. We con-
sider the general form of a binary operation that generates a new

variable (𝑥𝑟𝑒𝑠 ) from two operands (𝑥1 and 𝑥2). The 𝑥𝑟𝑒𝑠 .𝑡𝑎𝑖𝑛𝑡 at-
tribute is set to True if either 𝑥1 .𝑡𝑎𝑖𝑛𝑡 or 𝑥2.taint is True. When
both operands are address variables, we assume that the operation
can only be a comparison operation (== or !=) and 𝑥𝑟𝑒𝑠 .𝑝𝑜𝑖𝑛𝑡𝑒𝑟 is
set to False. If one of the operands is a pointer and the other is not,
we assume that the operation can only be addition or subtraction.
We set 𝑥𝑟𝑒𝑠 .𝑝𝑜𝑖𝑛𝑡𝑒𝑟 to True and assign the attributes of the pointer
operand to 𝑥𝑟𝑒𝑠 .𝑏𝑎𝑠𝑒_𝑡𝑎𝑖𝑛𝑡 . This way, we can ensure that, for each
address variable, taint is Truewhenever its data-flow is influenced
by attackers. The base and base_taint attributes will not change
when the offset is modified. These two attributes will always record
the buffer base. Note that the propagation algorithm can be easily
extended to other forms of operations since they can be converted
to binary forms accordingly.

Algorithm 2: Taint Propagation
input :𝑥1, 𝑥2, 𝑜𝑝
output :𝑥𝑟𝑒𝑠

1 𝑥𝑟𝑒𝑠 = new_variable()
2 𝑥𝑟𝑒𝑠 .value = op(𝑥1 .𝑣𝑎𝑙𝑢𝑒, 𝑥2 .𝑣𝑎𝑙𝑢𝑒)
3 taint = 𝑥1.taint ∨ 𝑥2.taint
4 if 𝑥1.pointer ∨ 𝑥2.pointer then
5 if 𝑥1.pointer ∧ 𝑥2.pointer then
6 assert(op is ’==’ or ’!=’)
7 pointer = False
8 base_taint = Null
9 else

10 assert(operation is ’+’ or ’-’)
11 pointer = True
12 if 𝑥1.pointer then
13 base_taint = 𝑥1.base_taint
14 else

15 base_taint = 𝑥2.base_taint
16 else

17 pointer = False
18 base_taint = Null
19 𝑥𝑟𝑒𝑠 .attributes = <taint, pointer, base_taint>
20 return 𝑥𝑟𝑒𝑠

3.6 Vulnerability Detection

As discussed in Sec. 2.2, memory instructions with unsafe address
arguments caused vulnerabilities 𝑉1 and 𝑉2. So for each memory
operation in the SGX program, we define two checking rules to
detect 𝑉1 and 𝑉2, respectively. Algorithm 3 presents the detailed
algorithm we use to identify vulnerabilities.

SymGX identifies 𝑉1 by applying two conditions in Algorithm 3:
(1) the pointer originates from the untrusted world (lines 1-2) and (2)
it points to an address within enclaves (line 3). For (1), we check the
taint and base_taint attributes of the target address. If both at-
tributes are True, it indicates that the pointer is under the attacker’s
control. For (2), we use the methods discussed in Section 3.2.3 to
check whether the address belongs to the enclave. If both conditions
are satisfied, SymGX treats it as a 𝑉1 instance.
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Algorithm 3: Vulnerability Detection
Input :𝑎𝑑𝑑𝑟, 𝑙𝑒𝑛𝑔𝑡ℎ

Output :𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑟𝑒𝑝𝑜𝑟𝑡𝑠
1 if 𝑎𝑑𝑑𝑟 .𝑡𝑎𝑖𝑛𝑡 then

2 if 𝑎𝑑𝑑𝑟 .𝑏𝑎𝑠𝑒_𝑡𝑎𝑖𝑛𝑡 then
3 if 𝑠𝑔𝑥_𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑒𝑛𝑐𝑙𝑎𝑣𝑒 (𝑎𝑑𝑑𝑟, 𝑙𝑒𝑛𝑔𝑡ℎ) == 0 then
4 return 𝑉1
5 else

6 if 𝑐ℎ𝑒𝑐𝑘_𝑖𝑛𝑠𝑖𝑑𝑒_𝑏𝑢𝑓 𝑓 𝑒𝑟 (𝑎𝑑𝑑𝑟, 𝑙𝑒𝑛𝑔𝑡ℎ) == 0 then
7 return 𝑉2
8 return Null

To detect vulnerability𝑉2, SymGX applies two conditions: (1) the
offset comes from the untrusted world (line 1) and (2) the address
goes beyond the buffer size (line 6). For (1), if taint is True and
base_taint is False, it indicates that the attacker can manipulate
the offset. For (2), we use an SMT solver to find possible solutions
that show if the address can exceed the buffer bound. We obtain the
base address from the base attribute and the buffer size from the
compilation information and memory. The compilation information
includes the size of local and global variables, and our memory
model records the size of dynamic variables that are created by
malloc functions. We formulate a set of checking expressions to
represent whether the address can cross the buffer bound and use an
SMT solver to solve them. If a solution exists, it means the address
may go beyond the buffer, and we report a 𝑉2 vulnerability.

4 EVALUATION

To evaluate SymGX, we create a comprehensive list of following
research questions.

RQ 1: How effective is SymGX’s vulnerability detection ability?
RQ 2: How precise is SymGX’s vulnerability report?
RQ 3: Can SymGX achieve higher code coverage than baselines?
RQ 4: How does GSTG-CAP perform without code coverage-
guided random walks with restarts?
RQ 5: What is the runtime memory consumption of SymGX?

4.1 Benchmark

We constructed a benchmark set of 27 applications that exhibit
cross-boundary pointer vulnerabilities. The set includes 14 public
GitHub applications and 13 real-world CVEs. We collected 22 open-
source SGX applications from GitHub and successfully compiled 14
of them. The remaining 8 failed to compile. The real-world CVEs
were found in popular confidential computing frameworks such as
Microsoft Open Enclave SDK [29] and Google Asylo [20], which are
widely used for SGX programming. The CVEs demonstrate typical
memory vulnerabilities in SGX memory.

We present the details of the open-source GitHub applications
in Table 3 and the details of the CVEs in Table 5. For each GitHub
application, we report the number of basic blocks (#BasicBlocks),
OCall (#OCall), and ECall (#ECall), following previous studies [18,
48]. These metrics indicate the complexity of SGX applications.
For each real-world CVE, we provide the CVE number and the
vulnerability type in Table 5.

Table 3: The information of GitHub projects we use in evalu-

ation

Projects Version #.Basicblocks #.ECall #.OCall

sgx-wallet [6] 8d15df1 312 4 7
SGXCryptoFile [63] 92f3cd6 4130 38 12

sgx-dnet [62] 0fe09cc 4910 3 4
verifiable-election [36] 5f0f9f1 1145 7 2

sgx-log [47] 7b5530e 1080 4 6
sgx-kmeans [37] 8ab6035 185 22 8
sgx-reencrypt [51] 6f06591 904 4 4
CryptoEnclave [57] 5c60615 2983 17 11
sgx-pwenclave [33] b81eace 1032 3 3

sgx-deep-learning [52] 2a6c3b7 3192 9 2
sgx-biniax2 [9] 35aaa1e 291 3 4
sgx-rsa [82] ed099d4 731 7 5

sgx_protect_file [59] 5f2e64e 609 5 4
SGXSSE [3] 0520695 489 6 3

4.2 Implementation and Experiment Setup

We used Python and SeeWasm [44] to create SymGX with 4.5k lines
of code. Our method sets 𝑝𝑟 to 0.2 for optimal efficiency, but other
values were not significantly different in effectiveness.

We conducted our experiments on a server running Ubuntu 20.04
with 8 Intel® Xeon® Gold 5218R CPUs @ 2.10GHz and 200 GB of
RAM. It is worth noting that our implementation is purely based
on software simulation of SGX functions. We need no hardware
support of SGX to run SymGX. We used Wllvm [70] to compile all
the benchmarks into dynamic link libraries and generate LLVM
bitcode files. Then, we used LLVM to compile the benchmarks from
LLVM bitcodes to WASM bitcode.

We compared our tool with two state-of-the-art tools, TeeRex [18]
and COIN [48], as baselines. We obtained the COIN code from its
official implementation [48], and we only focus on memory vul-
nerabilities that are relevant to cross-boundary vulnerabilities. For
TeeRex, since its code is not available, we implemented its frame-
work based on the design and algorithm in its paper [18]. The
original TeeRex was based on angr [68] and applied to executed
programs, while our framework works on bytecodes. Therefore,
there exist differences between our implementation and the original
one. To ensure a fair comparison between TeeRex and our tool, we
kept all factors the same except for the core algorithm, including
the instruction emulators and the state scheduling algorithm. Fol-
lowing the experimental settings in previous works, we set the time
limit to 12 hours to avoid any bias due to different tools.

Note that we decided not to evaluate two other recent works
sgxfuzz [19] andGuardian [5] after a preliminary study. sgxfuzz [19]
is a fuzzing tool that fundamentally differs from SymGX while
Guardian [5] adopts a technique fundamentally similar to TeeRex
but has inferior performance.

4.3 Effectiveness

To answer RQ1, we compare the vulnerability detection perfor-
mance of SymGX with baseline tools TeeRex and COIN. We con-
duct two tasks: (1) 0-DAY vulnerability hunting and (2) known
vulnerability validation. For 0-DAY vulnerability hunting, we apply
SymGX to 14 open-source GitHub projects and search for 0-DAY
vulnerabilities. We manually verify the reported vulnerabilities by
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Table 4: The effectiveness of SymGX and baselines in finding cross-boundary vulnerabilities. #Alerts is the number of alerts

reported by different tools. #Vul is the number of vulnerabilities we confirmed in the reports. SymGX
#
is SymGX that only uses

the BAMM without A𝑟 and A𝑝 .

Projects

TeeRex COIN SymGX
#

SymGX

#Alerts #Vul #Alerts #Vul #Alerts #Vul #Alerts #Vul
𝑉1 𝑉2 𝑉1 𝑉2 𝑉1 𝑉2 𝑉1 𝑉2 𝑉1 𝑉2 𝑉1 𝑉2 𝑉1 𝑉2 𝑉1 𝑉2

sgx-wallet [6] 273 0 1 0 0 0 0 0 4 5 0 1 6 9 0 1
SGXCryptoFile [63] 744 0 0 0 0 3 0 0 3 9 0 0 5 13 0 0

sgx-dnet [62] 321 0 1 0 0 0 0 0 2 4 1 1 4 8 1 1
verifiable-election [36] 410 0 0 0 0 5 0 2 4 8 1 2 7 11 1 4

sgx-log [47] 282 0 0 0 0 0 0 0 6 2 0 0 11 4 0 0
sgx-kmeans [37] 465 0 0 0 0 0 0 0 4 15 0 1 5 8 0 2
sgx-reencrypt [51] 92 0 0 0 0 0 0 0 0 5 0 0 0 9 0 0
CryptoEnclave [57] 876 0 1 0 0 0 0 0 10 3 1 0 16 5 1 0
SGX-pwenclave [33] 401 0 1 0 0 3 0 0 16 8 1 0 18 9 1 0

intel-sgx-deep-learning [52] 529 0 0 0 0 0 0 0 5 7 2 1 7 12 3 1
sgx-biniax [9] 691 0 2 0 0 0 0 0 4 4 0 0 9 6 0 2
sgx_rsa [82] 732 0 0 0 0 9 0 3 2 11 2 1 5 15 2 3

sgx_protect_file [59] 822 0 4 0 0 0 0 0 13 4 3 0 17 9 3 1
SGXSSE [3] 752 0 0 0 0 5 0 1 5 19 1 1 6 21 1 2

total 7390 0 10 0 0 25 0 6 78 104 12 8 116 139 13 17

following the methodology of previous literature [18]. For each
vulnerability, we try to craft an exploit. For a 𝑉1 vulnerability, we
aim to create a pointer from the untrusted world that points to
an enclave address. For 𝑉2, we create an array offset to cause a
buffer overflow inside enclaves. We classify reports that can be
successfully exploited as true positives. The exploit construction
procedure is consistent with previous work [18]. We report the
number of true 0-DAY vulnerabilities and false positives for the
14 projects. For known vulnerability validation, we measure the
time taken by SymGX to detect the 13 real-world CVEs in Microsoft
Open Enclave SDK [29] and Google Asylo [20]. Overall, these vul-
nerabilities involve 1 - 3 Ecalls and 2 - 15 parameters. We list the
details in Table 6 in Appendix A.

We present our findings in Table 4. The column labeled "#Vul"
displays the number of vulnerabilities detected in GitHub appli-
cations (we will discuss the other parts of Table 4 in Section 4.4).
In total, our tool SymGX identified 13 𝑉1 vulnerabilities and 17 𝑉2
vulnerabilities. Three of these vulnerabilities have been verified
and confirmed by the developers. We compare our tool with two
baselines: TeeRex and COIN. TeeRex reported 10 𝑉1 vulnerabili-
ties, while COIN detected 6 𝑉2 vulnerabilities and none of the 𝑉1
vulnerabilities. Interestingly, COIN did not find any issues in 11
applications. In summary, our tool discovered more vulnerabilities
(13+17=30) than the combined results of the baselines (10 for TeeRex
and 6 for COIN), demonstrating its effectiveness. We present the
types, depths of ECalls, and the numbers of ECall parameters of
each vulnerability in Appendix A.

We present the results of real-world CVEs in Table 5. The first
six rows (CVE-2020-8904 to CVE-2020-8944) correspond to 𝑉1 vul-
nerability, while the last seven rows show the 𝑉2 vulnerability
(CVE-2020-15224). We report the time taken by each tool to de-
tect the vulnerability or fail if it exceeded the time limit. Our tool
SymGX can identify all 𝑉1 and 𝑉2 vulnerabilities within 30 minutes
and the average detection time is about 12.9 minutes.

SymGX outperforms both baselines in detecting 𝑉1 and 𝑉2 vul-
nerabilities. COIN fails to identify any 𝑉1 vulnerabilities and only
finds one𝑉2 vulnerability (CVE-2020-15224) in 62 minutes, which is
about seven times slower than our tool’s 9 minutes. TeeRex, on the
other hand, can only detect𝑉1 vulnerabilities and takes much longer
than our tool. On average, TeeRex takes 31.17 minutes, which is
more than 2.41 times the 12.92 minutes taken by our tool.
Response from Developers:We reported the 30 vulnerabilities
that SymGX detected to the developers of the affected projects. By
the time we submitted this paper, we had received feedback from
two projects about three vulnerabilities. The developers confirmed
that these were 0-DAY vulnerabilities. The first two vulnerabilities,
a 𝑉1 and a 𝑉2 vulnerability, respectively, affected SGX-dnet [62].
The third vulnerability was a 𝑉2 vulnerability in sgxwallet [6]. We
are collaborating with the developers to create patches for these
three vulnerabilities.

Answer to RQ 1: Within a limited time, SymGX, can detect
more vulnerabilities than the state-of-the-art baselines.

4.4 Precision

Precision is an important metric for evaluating bug detectors. A
higher precision, or a lower false alarm rate, can help developers
save a lot of time and effort in investigating vulnerabilities. Table 4
shows the bugs reported in GitHub applications in the “#Alerts”
columns. Precision can be computed as #𝑉𝑢𝑙/#𝐴𝑙𝑒𝑟𝑡𝑠 .

As shown in Table 4, TeeRex has a very low precision of only
0.14% (10/7390), which leads to a huge number of false positives. For
instance, in CryptoEnclave, out of 876 reports, only one contains
a real vulnerability. On the other hand, COIN has a much higher
precision of 24.00% (6/25) because it only raises alerts when it is
confident. However, this cautious approach also fails to catch many

1There are multiple vulnerabilities sharing the same CVE-number according to the
commit of developers [21] and we detect the vulnerabilities separately.
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Table 5: The time consumed to detect real vulnerabilities for

SymGX and baselines. Fail means the tool cannot find the

vulnerability within 12 hours. The column CVE contains the

link to the CVE reports.

Project Version CVE Type SymGX TeeRex COIN

Asylo

0.5.3 [24] 𝑉1 6min 23min Fail
[23] 𝑉1 11min 17min Fail

0.6.0

[28] 𝑉1 7min 8min Fail
[27] 𝑉1 2min 21 min Fail
[25] 𝑉1 9min 7min Fail
[26] 𝑉1 12min 12min Fail

OpenEclave1 0.10.0

[22] 𝑉2 22min Fail Fail
[22] 𝑉2 19min Fail Fail
[22] 𝑉2 17min Fail Fail
[22] 𝑉2 12min Fail Fail
[22] 𝑉2 9min Fail 62min
[22] 𝑉2 24min Fail Fail
[22] 𝑉2 18min Fail Fail

true vulnerabilities. As we discussed in RQ 1, COIN can detect only
6 𝑉2 vulnerabilities and none of the 𝑉1 vulnerabilities, limiting its
usefulness in real-world applications.

SymGX achieves a precision of 11.76% (30/255) in detecting real
vulnerabilities. This is a significant improvement over TeeRex,
which has a precision of only 0.2%. COIN has a higher precision
than SymGX, but it also misses 5× more real vulnerabilities (30 vs.
6). Therefore, SymGX balances precision and recall better than the
existing tools.

4.4.1 False Positives: After analyzing false alarms, we have identi-
fied three main sources. Firstly, SMT solvers may produce incon-
sistent results in certain cases, which is unavoidable in practice.
In situations like those detailed in Section 3.2.3, if the SMT solver
fails to provide an accurate result, SymGX may explore branches
that are not reachable, ultimately leading to false alarms. Secondly,
SymGX may return an unconstrained symbol whenever it encoun-
ters functions that are not emulated. In reality, the return value may
be constrained, causing false alarms. Lastly, the taint and pointer
analysis is not 100% accurate and may introduce false alarms.

We conducted a quantitative analysis to determine the sources
of the false alarms. Out of the 225 false alarms, 102 were due to the
SMT solver’s inaccurate results, 71 were due to undefined functions,
and 52 were due to errors in taint and pointer analysis. Based on
this analysis, reducing false alarms can be achieved by emulating
more functions and enhancing the accuracy of static analysis.

4.4.2 Effectiveness of the Two Conditions of 𝑉1: In Algorithm 3,
there are two conditions used to detect 𝑉1. Line 2 detects if the
adversary provides the address base pointer, and Line 3 detects if
the pointer points to an address inside the enclave. The second con-
dition is necessary because our threat model assumes that all data
outside of enclaves are dangerous. To quantitatively study the effec-
tiveness of the second condition of𝑉1, we conducted the experiment
from Section 4.4 again and found 893 false alerts. In comparison,
with both conditions enabled, SymGX had 225 false positives. This
result shows that the second condition of 𝑉1 effectively reduces
false positives.

Answer to RQ 2: SymGX achieves a precision of 11.8%, which
is nearly 59× better than the state-of-the-art TeeRex. More-
over, SymGX identifies 5×more vulnerabilities than COIN, even
though it has a lower precision.

4.5 Coverage

We conduct a comparison of the code coverage obtained by SymGX
and two baselines. Due to the space constraint, the complete results
are provided in Appendix A.

SymGX achieves an average coverage of 48.21%, which exceeds
TeeRex by 12.28% and COIN by 19.28%. SymGX consistently sur-
passes the other two baselines for all applications (details in Appen-
dix A). This superior performance results from our ECall sequence
generation algorithm and optimizations, namely, the pruning and
ranking approaches. Unlike TeeRex, which overlooks information
flows across ECalls, SymGX can reduce execution time by eliminat-
ing unreachable paths. In contrast to COIN, which performs brute-
force and random emulations of ECall sequences, the optimization
developed in SymGX can selectively generate more high-quality
ECall sequences.

Answer to RQ 3: One of the factors that makes SymGX more
effective is its higher code coverage. Compared to TeeRex and
COIN, SymGX achieves 12% and 20% higher code coverage on
average, respectively.

4.6 Case Study

In this section, we explain how SymGX can detect realistic cross-
boundary pointer vulnerabilities with a case study. The vulnerabil-
ity is from sgx-biniax2 [9]. We show the main codes in Listing 6 2.

In the code snippet, there are two ECalls: add_to_store (Line
15) and get_from_store (Line 23). The function add_to_store
takes an array (in_bytes) and its length (in_len) as input and
stores the input to the global variable store (line 15) in the enclave.
The content of in_bytes is stored in store->bytes and the length
in_len is stored in store->lengths. get_from_store receives an
index, looks up store->bytes, and moves store->bytes[index]
back to the untrusted world.

There’s a 𝑉2 vulnerability in the code where get_from_store
doesn’t verify out_len. An attacker can use add_to_store to insert
an array, and then calling get_from_storewith a out_len smaller
than in_len to cause a buffer overflow. Note that on line 5, the
developer added the annotator [out_bytes, size=out_len]. This
indicates that the pointer out_bytes is shared by both the enclave
and the untrusted world. To make this possible, the SGX SDK will
allocate a temporary buffer inside the enclave with the size of
out_len as the target of memcpy. It will then copy the content from
the temporary buffer to an array outside the enclave. Unfortunately,
an adversary can cause a buffer overflow at line 33 by carefully
crafting index, in_len, in_bytes, and out_len, allowing arbitrary
modifications to memory inside the enclave.

SymGX detects the vulnerability as follows: SymGX explores the
GSTG and finds a Ecall chain of add_to_store→ get_from_store.
During the exploration, SymGX symbolically execute add_to_store,

2We simplified the code for clarity.
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1 //Enclave.edl
2 void add_to_store([in,size=in_len]const void *in_bytes,
3 size_t in_len);
4 void get_from_store([out,size=out_len]void *out_bytes,
5 size_t out_len, size_t index);
6 ...
7 #define MAX_ARRAY_NUM 100
8 typedef struct Store {
9 int array_num;
10 int bytes[MAX_ARRAY_NUM];
11 int lengths[MAX_ARRAY_NUM];
12 } Store;
13 //Enclave.c
14 sgx_CryptStore_Store *store;
15 void add_to_store(const void *in_bytes, size_t in_len){
16 ... // checks on in_len and in_bytes
17 store->bytes[store->array_num] = malloc(in_len);
18 memcpy(store->bytes[store->array_num],in_bytes,in_len);
19 store->lengths[store->array_num] = in_len;
20 store->array_num++;
21 ...
22 }
23 void get_from_store(void *out_bytes, size_t out_len,
24 size_t index){
25 ... //checks on out_bytes and index but not on out_len
26 int size = store->lengths[index];
27 memcpy(out_bytes, store->bytes[index], size);
28 ...
29 }

Listing 6: A 𝑉2 vulnerability caused by a global variable.

which adds a in_bytes and in_len as symbolic variables to the
arrays in store. In this step, SymGX marks the in_bytes and
in_len as tainted because they are from the untrusted world. Here,
the index is concretized. Lastly, SymGX symbolically executes
get_from_store. In this step, SymGX enumerates possible values
of index and retrieves the corresponding symbolic values from
the array. Then, it detects whether the size variable at line 32 is
tainted. If so, SymGX calls the SMT solver to check whether the
size can be larger than out_len, which leads to 𝑉2 in our case.

4.7 Ablation Study

In this section, we assess the effectiveness of GSTG-CAP and two
optimization functions, A𝑟 and A𝑝 . We compare the performance
of our tool with and without these optimization functions.

We show the results in Table 4 and Figure 5. Due to the space
limit, we put the complete result of the coverage data in Figure 5 in
the Appendix. In our results, SymGX # represents the performance
of SymGX that only uses GSTG-CAPwithoutA𝑟 andA𝑝 . As shown
in Table 4, SymGX # still finds 20 vulnerabilities and outperform the
baselines. This result demonstrates the effectiveness of our memory
model. We also collect thr code coverage of SymGX without A𝑟

and A𝑝 and show the results in Figure 5 represented by SymGX #.
Without A𝑟 nor A𝑝 , the average coverage is 39.61%. A𝑟 and A𝑝

can increase the coverage by 8.60%.
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Figure 4: Memory usage for SymGX and baselines

As discussed in Section 4.3, SymGX discovered 30 vulnerabilities
by combining A𝑟 and A𝑝 . This is because A𝑝 can save resources
by skipping the set of ECall sequences that revisit the same code
blocks, whileA𝑟 can focus on more important ECall sequences that
exploremore new code blocks. Hence, we infer that the optimization
functions A𝑟 and A𝑝 can enhance the effectiveness of SymGX.

Answer to RQ 4: SymGX achieves superior performance over
the baselines only when using the GSTG-CAP. The effectiveness
of SymGX can be further enhanced by applying A𝑟 and A𝑝 .

4.8 Memory Consumption

We measured the memory usage of our tool and its baselines. We
collected the memory usage data every minute during the execution
process and displayed the box-plot of the memory usage samples in
Figure 6 in Appendix A. The average usage for TeeRex, COIN, and
our tool was 8.43GB, 50.71GB, and 8.94GB, respectively. We noticed
that the memory usage of COIN was 5.67 times higher than SymGX.
This is because COIN generates all possible ECall sequences that
its memory usage grows exponentially with the number of ECalls.
The memory usage of TeeRex was comparable to that of our tool.

Answer to RQ 5: SymGX has a much lower memory consump-
tion than COIN.

5 RELATED WORK

SGX has been widely used in many applications [10, 15, 66, 73–75].
Recent works have intensively studied side-channel vulnerabilities
in SGX [2, 8, 12, 14, 16, 34, 43, 49, 53, 58, 72, 77, 79], while memory
attacks have also received increasing attention [11, 46, 65, 71]. ASLR-
based memory protection methods also appeared for SGX [54, 64,
80]. However, they cannot fully mitigate cross-boundary pointer
vulnerabilities and are orthogonal to SymGX. The closest work
to SymGX is vulnerability detectors like COIN [48], TeeRex [18]
and other similar approaches [19, 35]. Nevertheless, none of these
approaches can handle cross-boundary pointer vulnerabilities or
capture the three unique properties of SGX applications.
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6 DISCUSSION

Handling OCalls. SymGX analyzes ECalls from the untrusted
world, skipping detailed analysis of OCalls for efficiency. Any val-
ues returned from OCalls are assumed to be tainted symbolic vari-
ables. Symbolically analyzing functions in the untrusted world is
impractical due to complexity. Thus, only handling ECalls does not
harm the soundness of SymGX, given our threat model.
Exploit Generation. SymGX identifies the location and type of
cross-boundary vulnerabilities in SGX applications. It also forms a
valid ECall sequence and parameters to trigger the vulnerability. As
a result, SymGX can provide experts with above details to construct
exploits. However, experts still need to manually verify the reports.
In the future, we plan to invest new methods for automation.

7 CONCLUSION

Cross-boundary pointer vulnerability is a critial problem in SGX
applications, due to the pointer-based data exchange between en-
claves and untrusted environments. However, current analysis
methods are ineffective in detecting such vulnerability since they
cannot model three distinct features of SGX applications: Multi-
entry Arbitrary-order Execution, Stateful Execution, and Context-
aware Pointers. We propose a new symbolic execution technique
called SymGX. Our tool builds upon a novel analysis model called
GSTG-CAP that handles the above three properties. According to
our evaluation, SymGX detected 30 new vulnerabilities in 14 open-
source projects and found all 13 known vulnerabilities in Microsoft
Open Enclave SDK and Google Asylo. In comparison, existing tech-
niques only reported a small subset of the new and known vulnera-
bilities. Overall, SymGX is superior to existing solutions in detecting
cross-boundary pointer vulnerabilities.
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A FULL EXPERIMENT RESULTS

In this section, we show the complete results of our evaluation.
Figure 5 and Figure 6 show the coverage and memory consumption
on the whole benchmark. Table 6 shows the details of each vulner-
ability we detect, including the number of ECalls (#ECalls) and the
number of ECall parameters (#ECall Param.).
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Table 6: Details of vulnerabilities

ID Benchmark Type #ECall #ECall Param. ID Benchmark Type #ECall #ECall Param.
1 sgx-wallet V2 2 4 16 SGX-pwenclave V1 1 3
2 sgx-dnet V1 1 3 17 sgx-biniax V2 3 5
3 V2 1 3 18 V2 3 5
4

verifiable-election

V1 1 2 19

sgx_rsa

V1 1 6
5 V2 1 2 20 V1 1 6
6 V2 1 2 21 V2 2 10
7 V2 2 4 22 V2 3 14
8 V2 2 4 23 V2 3 15
9 sgx-kmenas V2 2 8 24

sgx_protect_file

V1 1 3
10 V2 3 12 25 V1 1 3
11 CryptoEnclave V1 1 4 26 V1 1 3
12

sgx-deep-learning

V1 1 4 27 V2 2 6
13 V1 1 4 28

SGXSSE
V1 1 4

14 V1 2 7 29 V2 1 4
15 V2 2 8 30 V2 3 12
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Figure 5: The complete coverage result of SymGX on the entire benchmarks
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Figure 6: The complete memory consumption result of SymGX on the entire benchmarks
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