skip to main content
research-article

Experimental Evaluation of Covariates Effects on Periocular Biometrics: A Robust Security Assessment Framework

Published:22 June 2023Publication History
Skip Abstract Section

Abstract

The growing integration of technology into our lives has resulted in unprecedented amounts of data that are being exchanged among devices in an Internet of Things (IoT) environment. Authentication, identification, and device heterogeneities are major security and privacy concerns in IoT. One of the most effective solutions to avoid unauthorized access to sensitive information is biometrics. Deep learning-based biometric systems have been proven to outperform traditional image processing and machine learning techniques. However, the image quality covariates associated with blur, resolution, illumination, and noise predominantly affect recognition performance. Therefore, assessing the robustness of the developed solution is another important concern that still needs to be investigated. This article proposes a periocular region-based biometric system and explores the effect of image quality covariates (artifacts) on the performance of periocular recognition. To simulate the real-time scenarios and understand the consequences of blur, resolution, and bit-depth of images on the recognition accuracy of periocular biometrics, we modeled out-of-focus blur, camera shake blur, low-resolution, and low bit-depth image acquisition using Gaussian function, linear motion, interpolation, and bit plan slicing, respectively. All the images of the UBIRIS.v1 database are degraded by varying strength of image quality covariates to obtain degraded versions of the database. Afterward, deep models are trained with each degraded version of the database. The performance of the model is evaluated by measuring statistical parameters calculated from a confusion matrix. Experimental results show that among all types of covariates, camera shake blur has less effect on the recognition performance, while out-of-focus blur significantly impacts it. Irrespective of image quality, the convolutional neural network produces excellent results, which proves the robustness of the developed model.

REFERENCES

  1. [1] Akhtar Z., Kumar G., Bakshi S., and Proença H.. 2018. Experiments with ocular biometric datasets: A practitioner’s guideline. IT Profess. 20, 3 (2018), 5063. DOI: Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Alaba Fadele Ayotunde, Othman Mazliza, Hashem Ibrahim Abaker Targio, and Alotaibi Faiz. 2017. Internet of things security: A survey. J. Netw. Comput. Applic. 88 (2017), 1028. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. [3] Alonso-Fernandez Fernando, Fierrez Julian, Ortega-Garcia Javier, Gonzalez-Rodriguez Joaquin, Fronthaler Hartwig, Kollreider Klaus, and Bigun Josef. 2007. A comparative study of fingerprint image-quality estimation methods. IEEE Trans. Inf. Forens. Secur. 2, 4 (2007), 734743. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. [4] Becker Christoph, Duretec Kresimir, and Rauber Andreas. 2017. The challenge of test data quality in data processing. J. Data Inf. Qual. 8, 2 (2017), 14. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Belhadi Asma, Djenouri Youcef, Srivastava Gautam, Djenouri Djamel, Lin Jerry Chun-Wei, and Fortino Giancarlo. 2021. Deep learning for pedestrian collective behavior analysis in smart cities: A model of group trajectory outlier detection. Inf. Fusion 65 (2021), 1320. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Berisha Sebastian and Nagy James G.. 2014. Iterative methods for image restoration. In Academic Press Library in Signal Processing, Vol. 4. Elsevier, 193247. DOI: Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Bradski G.. 2000. The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000). https://docs.opencv.org/3.4/da/d54/group__imgproc__transform.html#gga5bb5a1fea74ea38e1a5445ca803ff121acf959dca2480cc694ca016b81b442ceb.Google ScholarGoogle Scholar
  8. [8] Cha Young-Jin, Choi Wooram, and Büyüköztürk Oral. 2017. Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aid. Civil Infrast. Eng. 32, 5 (2017), 361378. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. [9] Cook Robert L.. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1 (1986), 5172. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Ferrag Mohamed Amine, Maglaras Leandros, and Derhab Abdelouahid. 2019. Authentication and authorization for mobile IoT devices using biofeatures: Recent advances and future trends. Secur. Commun. Netw. (2019). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Getreuer Pascal. 2013. A survey of Gaussian convolution algorithms. Image Process. (2013), 286310. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Gonzales Rafael C. and Woods Richard E.. 2002. Digital image processing. Prentice-Hall, Inc. (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [13] Grm Klemen, Štruc Vitomir, Artiges Anais, Caron Matthieu, and Ekenel Hazım K.. 2017. Strengths and weaknesses of deep learning models for face recognition against image degradations. IET Biomet. 7, 1 (2017), 8189. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Grother Patrick and Tabassi Elham. 2007. Performance of biometric quality measures. IEEE Trans. Pattern Anal. Mach. Intell. 29, 4 (2007), 531543. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [15] Guo Chen, Liu Yue-lan, and Jiao Xuan. 2019. Study on the influence of variable stride scale change on image recognition in CNN. Multim. Tools Applic. 78, 21 (2019), 3002730037. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Harriero Alberto, Ramos Daniel, Gonzalez-Rodriguez Joaquin, and Fierrez Julian. 2009. Analysis of the utility of classical and novel speech quality measures for speaker verification. In 3rd International Conference on Advances in Biometrics (ICB’09). Springer-Verlag, Berlin, 434442. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] He Kaiming, Zhang Xiangyu, Ren Shaoqing, and Sun Jian. 2016. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition. 770778. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] Herrmann Christian, Willersinn Dieter, and Beyerer Jürgen. 2016. Low-resolution convolutional neural networks for video face recognition. In 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). 221227. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Irshad Azeem, Usman Muhammad, Chaudhry Shehzad Ashraf, Bashir Ali Kashif, Jolfaei Alireza, and Srivastava Gautam. 2021. Fuzzy-in-the-loop-driven low-cost and secure biometric user access to server. IEEE Trans. Reliab. 70, 3 (2021), 10141025. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Jillela R., Ross A., Boddeti N., Kumar B. V., Hu X., Plemmons R., and Pauca P.. 2002. An evaluation of iris segmentation algorithms in challenging periocular images. Handbook of Iris Recognition. Springer. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Karahan Samil, Yildirum Merve Kilinc, Kirtac Kadir, Rende Ferhat Sukru, Butun Gultekin, and Ekenel Hazim Kemal. 2016. How image degradations affect deep CNN-based face recognition? In International Conference of the Biometrics Special Interest Group (BIOSIG). 15. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Krizhevsky Alex, Sutskever Ilya, and Hinton Geoffrey E.. 2012. ImageNet classification with deep convolutional neural networks. In 25th International Conference on Neural Information Processing Systems (NIPS). Curran Associates Inc., 10971105. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Kuhn Max, Johnson Kjell, et al. 2013. Applied Predictive Modeling, Vol. 26. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Kumar Gautam, Bakshi Sambit, Sa Pankaj Kumar, and Majhi Banshidhar. 2020. Non-overlapped blockwise interpolated local binary pattern as periocular feature. Multim. Tools Applic. (2020), 133. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Lagendijk Reginald L. and Biemond Jan. 2009. Basic methods for image restoration and identification. In The Essential Guide to Image Processing. Elsevier, 323348. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Lee Hyunwoo, Kim Jooyoung, Yang Dojun, and Kim Joon-Ho. 2017. Embedded real-time fall detection using deep learning for elderly care. arXiv preprint arXiv:1711.11200 (2017).Google ScholarGoogle Scholar
  27. [27] Lee Min, Hong Hyung, and Park Kang. 2017. Noisy ocular recognition based on three convolutional neural networks. Sensors 17, 12 (2017), 2933. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Lee Young Won, Kim Ki Wan, Hoang Toan Minh, Arsalan Muhammad, and Park Kang Ryoung. 2019. Deep residual CNN-based ocular recognition based on rough pupil detection in the images by NIR camera sensor. Sensors 19, 4 (2019), 842. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Li Yuxi, Zuo Yue, Song Houbing, and Lv Zhihan. 2021. Deep learning in security of internet of things. IEEE Internet Things J. (2021), 11. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Lin Jerry Chun-Wei and Yeh Kuo-Hui. 2021. Security and privacy techniques in IoT environment. Sensors 21, 1 (2021). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Liu Xiangbin, He Jiesheng, Song Liping, Liu Shuai, and Srivastava Gautam. 2021. Medical image classification based on an adaptive size deep learning model. ACM Trans. Multim. Comput. Commun. Applic. 17, 3s (Oct.2021). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Lv Zhihan. 2020. Security of internet of things edge devices. Softw.: Pract. Exper. 51 (022020). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Madakam Somayya, R. Ramaswamy, and Siddharth Tripathi. 2015. Internet of things (IoT): A literature review. J. Comput. Commun. 3, 05 (2015), 164173. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Madnick Stuart E., Wang Richard Y., Lee Yang W., and Zhu Hongwei. 2009. Overview and framework for data and information quality research. J. Data Inf. Qual. 1, 1 (June2009). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Malina Lukas, Srivastava Gautam, Dzurenda Petr, Hajny Jan, and Ricci Sara. 2019. A privacy-enhancing framework for internet of things services. In International Conference on Network and System Security. Springer, 7797. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. [36] Marcheggiani Diego and Sebastiani Fabrizio. 2017. On the effects of low-quality training data on information extraction from clinical reports. J. Data Inf. Qual. 9, 1 (2017), 125. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [37] Miller P. E., Lyle J. R., Pundlik S. J., and Woodard D. L.. 2010. Performance evaluation of local appearance based periocular recognition. In 4th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS). DOI: Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Moreno Juan C., Prasath V. B. Surya, Santos Gil, and Proença Hugo. 2016. Robust periocular recognition by fusing sparse representations of color and geometry information. J. Sig. Process. Syst. 82, 3 (01 Mar.2016), 403417. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Omelina Lubos, Goga Jozef, Pavlovicova Jarmila, Oravec Milos, and Jansen Bart. 2021. A survey of iris datasets. Image Vis. Comput. 108 (2021), 104109. DOI: Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Padole C. N. and Proença H.. 2012. Periocular recognition: Analysis of performance degradation factors. In 5th IAPR International Conference on Biometrics (ICB). 439445. DOI: Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Padole C. N. and Proença H.. 2013. Compensating for pose and illumination in unconstrained periocular biometrics. Int. J. Biomet. 5, 3-4 (2013), 336359. DOI: Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Pereira Rafael B., Plastino Alexandre, Zadrozny Bianca, and Merschmann Luiz H. C.. 2018. Correlation analysis of performance measures for multi-label classification. Inf. Process. Manag. 54, 3 (2018), 359369. DOI: Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Potmesil Michael and Chakravarty Indranil. 1983. Modeling motion blur in computer-generated images. ACM SIGGRAPH Comput. Graph. 17, 3 (1983), 389399. DOI: Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] Powers David M. W.. 2020. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061 (2020).Google ScholarGoogle Scholar
  45. [45] Proença H. and Alexandre Luís A.. 2005. UBIRIS: A noisy iris image database. In Image Analysis and Processing – ICIAP. Springer, 970–977. DOI: Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. [46] Proença Hugo and Neves João C.. 2016. Visible-wavelength iris/periocular imaging and recognition surveillance environments. Image Vis. Comput. 55 (2016), 2225. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Proença H., Filipe S., Santos R., Oliveira J., and Alexandre L. A.. 2010. The UBIRIS.v2: A database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans. Pattern Anal. Mach. Intell. 32, 8 (2010), 15291535. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. [48] Raja Kiran, Ramachandra Raghavendra, and Busch Christoph. 2020. Collaborative representation of blur invariant deep sparse features for periocular recognition from smartphones. Image Vis. Comput. 101 (2020), 103979. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Rattani A., Derakhshani R., Saripalle S. K., and Gottemukkula V.. 2016. Competition on mobile ocular biometric recognition. In IEEE International Conference on Image Processing (ICIP). 320324. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Reddy Narsi, Noor Dewan Fahim, Li Zhu, and Derakhshani Reza. 2018. Multi-frame super resolution for ocular biometrics. In IEEE Conference on Computer Vision and Pattern Recognition Workshops. 453461. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Rosebrock A.. 2017. Deep Learning for Computer Vision with Python: ImageNet Bundle. PyImageSearch. Google ScholarGoogle Scholar
  52. [52] Roy Prasun, Ghosh Subhankar, Bhattacharya Saumik, and Pal Umapada. 2018. Effects of degradations on deep neural network architectures. arXiv preprint arXiv:1807.10108 (2018).Google ScholarGoogle Scholar
  53. [53] Sabour Sara, Frosst Nicholas, and Hinton Geoffrey E.. 2017. Dynamic routing between capsules. In International Conference on Advances in Neural Information Processing Systems. 38563866.Google ScholarGoogle Scholar
  54. [54] Santos G., Grancho E., Bernardo M. V., and Fiadeiro P. T.. 2014. Fusing iris and periocular information for cross-sensor recognition. Pattern Recog. Lett. (2014). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. [55] Seal Ayan, Bhattacharjee Debotosh, Nasipuri Mita, and Basu Dipak Kumar. 2012. Minutiae from bit-plane sliced thermal images for human face recognition. In International Conference on Soft Computing for Problem Solving (SocProS’11). Springer, 113124. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Sebastiani Fabrizio. 2002. Machine learning in automated text categorization. ACM Comput. Surv. 34, 1 (2002), 147. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. [57] Sharma A., Verma S., Vatsa M., and Singh R.. 2014. On cross spectral periocular recognition. In IEEE International Conference on Image Processing (ICIP). 50075011. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Simonyan Karen and Zisserman Andrew. 2014. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556 (2014).Google ScholarGoogle Scholar
  59. [59] Sing Tobias, Sander Oliver, Beerenwinkel Niko, and Lengauer Thomas. 2005. ROCR: Visualizing classifier performance in R. Bioinformatics 21, 20 (2005), 39403941. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. [60] Srinivas T., Mohan P. Sandeep, Shankar R. Shiva, Reddy Surender, Naganjaneyulu P. V. et al. 2013. Face recognition using PCA and bit-plane slicing. In 3rd International Conference on Trends in Information, Telecommunication and Computing. Springer, 515523. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Srivastava Gautam, Parizi Reza M., Dehghantanha Ali, and Choo Kim-Kwang Raymond. 2019. Data sharing and privacy for patient IoT devices using blockchain. In International Conference on Smart City and Informatization. Springer, 334348. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Szegedy Christian, Liu Wei, Jia Yangqing, Sermanet Pierre, Reed Scott, Anguelov Dragomir, Erhan Dumitru, Vanhoucke Vincent, and Rabinovich Andrew. 2015. Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition. 19. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Trnka Michal, Cerny Tomas, and Stickney Nathaniel. 2018. Survey of authentication and authorization for the internet of things. Secur. Commun. Netw. (2018). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. [64] Umer Saiyed, Sardar Alamgir, Dhara Bibhas Chandra, Rout Ranjeet Kumar, and Pandey Hari Mohan. 2020. Person identification using fusion of iris and periocular deep features. Neural Netw. 122 (2020), 407419. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. [65] Wong Yongkang, Chen Shaokang, Mau Sandra, Sanderson Conrad, and Lovell Brian C.. 2011. Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition. In IEEE Biometrics Workshop, Computer Vision and Pattern Recognition (CVPR) Workshops. 8188. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  66. [66] Woodard D. L., Pundlik S. J., and Miller P. E.. 2010. On the fusion of periocular and iris biometrics in non-ideal imagery. 20th International Conference on Pattern Recognition (ICPR). 201204. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. [67] Yang Chen, Wang Yizhou, Wang Xiaoli, and Geng Li. 2020. A stride-based convolution decomposition method to stretch CNN acceleration algorithms for efficient and flexible hardware implementation. IEEE Trans. Circ. Syst. I: Reg. Pap. 67, 9 (2020), 30073020. DOI:Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Experimental Evaluation of Covariates Effects on Periocular Biometrics: A Robust Security Assessment Framework

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Journal of Data and Information Quality
      Journal of Data and Information Quality  Volume 15, Issue 2
      June 2023
      363 pages
      ISSN:1936-1955
      EISSN:1936-1963
      DOI:10.1145/3605909
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 June 2023
      • Online AM: 30 January 2023
      • Accepted: 5 December 2022
      • Revised: 2 November 2022
      • Received: 22 March 2022
      Published in jdiq Volume 15, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)116
      • Downloads (Last 6 weeks)14

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text