skip to main content
10.1145/3579109.3579129acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicvipConference Proceedingsconference-collections
research-article

Single-scan Run Length Algorithm for Real-time Fiducial Marker Detection Based on FPGA Devices

Published:14 March 2023Publication History

ABSTRACT

Image processing pipelines involved in detecting markers from real-time video employ contour detection algorithms. Field Programmable Gate Arrays (FPGA) can provide greater computing power due to parallel processing and pipelining of the different stages in these algorithms. However, FPGA implementation of different contour detection methods remains challenging due to resource limitation and timing constraints. In this work a novel approach for a complete pipeline has been presented based on FPGA. The method used for the detection of fiducial markers from real-time video streams is based on a single-scan approach. Implementation of such pipeline into reconfigurable technology is specially challenging compared to software-oriented implementation as pointers, dynamic structures, efficient use of resources, etc. need to be considered. A driver is the need to fit the design into low-cost reconfigurable devices. To help face the related challenges of a hardware implementation High Level Synthesis (HLS) technology has been adopted, which implies reengineering of the reference algorithms. The results show a successful detection of markers over a dataset acquired in a controlled indoor environment with different resolutions at different distances. The proposal has been prototyped and tested on a Zedboard with Xilinx Zynq®-7000 SoC.

References

  1. Schoun, B., Oagaz, H., Choi, M.H. 2021. Corner-based square fiducial marker detection for hand-manipulated AR objects. In Proceedings of the IEEE International Conference on Intelligent Reality (ICIR). IEEE. doi: 10.1109/ICIR51845.2021.00014Google ScholarGoogle ScholarCross RefCross Ref
  2. Oliveira J. A., Piardi, L., Giometti, E. B., Leitao, P. 2021. Improving the mobile robots indoor localization system by combining SLAM with fiducial markers. In: 2021 Latin American Robotic Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR). IEEE. doi: 10.1109/LARS/SBR/WRE54079.2021.9605456Google ScholarGoogle Scholar
  3. Annusewicz, A., Zwierzchowski, J. 2020. Marker detection algorithm for the navigation of a mobile robot. In Proceedings of the 27th International Conference - Mixed Design of Integrated Circuits and Systems 2020, Poland, pp. 223-226. IEEE Xplore. doi: 10.23919/mixdes49814.2020.9155658Google ScholarGoogle ScholarCross RefCross Ref
  4. Liu, Y., Schofield, H., Shan, J. 2021. Navigation of a self-driving vehicle using one fiducial marker. In: 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. IEEE. doi: 10.1109/MFI52462.2021.9591194Google ScholarGoogle ScholarCross RefCross Ref
  5. Attard, L., Debono, C.J., Valentino, G., Castro, M., Tambutti, M.L.B. 2018. An RGB-D video-based wire detection tool to aid robotic arms during machine alignment measurement. In: Proceedings of the IST 2018 - IEEE International Conference on Imaging Systems and Techniques. IEEE. doi: 10.1109/IST.2018.8577199Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Khazetdinov, A., Zakiev, A., Tsoy, T., Svinin, M., Magid, E. 2021. Embedded ArUco: a novel approach for high precision UAV landing. In: 2021 International Siberian Conference on Control and Communications (SIBCON). IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  7. Zhang, X., Jiang, J., Fang, Y 2019. Enhanced fiducial marker based precise landing for quadrotors. In Proceedings of the 2019 IEEE-ASME International Conference on Advanced Intelligent Mechatronics, Hong Kong, China. IEEE. doi: 10.1109/AIM.2019.8868532Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Acuna, R., Li, Z., Volker, W. 2018. MOMA: Visual Mobile Marker Odometry. In: 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), France, IEEE. doi: 10.1109/IPIN.2018.8533685Google ScholarGoogle Scholar
  9. Truong, V.T., Lao, J.S., Huang, C.C. 2020. Multi-camera marker-based real-time head pose estimation system. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition, MAPR. IEEE. doi: 10.1109/MAPR49794.2020.9237775Google ScholarGoogle ScholarCross RefCross Ref
  10. Romero-Ramirez, F. J., Muñoz-Salinas, R., Medina-Carnicer, R. 2019. Fractal Markers: a new approach for long-range marker pose estimation under occlusion. IEEE Access, vol. 7, IEEE. doi: 10.1109/ACCESS.2019.2951204Google ScholarGoogle Scholar
  11. Wang, Y., Ji, Y. Liu, D. Tamura, Y. 2020. ACMarker: acoustic camera-based fiducial marker system in underwater environment. In: IEEE Robotics and Automation Letters, vol. 5 (6), pp. 5018-5025. IEEE. doi: 10.1109/LRA.2020.3005375Google ScholarGoogle ScholarCross RefCross Ref
  12. Romero-Ramirez, F. J., Muñoz-Salinas, R., Medina-Carnicer, R. 2018.Speeded up detection of squared fiducial markers.In: Image and Vision Computing, vol. 76, pp. 38–47, Aug. 2018. doi: 10.1016/j.imavis.2018.05.004Google ScholarGoogle ScholarCross RefCross Ref
  13. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., Marin-Jimenez, M. J. 2014. Automatic generation and detection of highly reliable fiducial markers under occlusion. In: Pattern Recognition, vol. 47 (6), pp. 2280–2292. Elsevier. doi: https://doi.org/10.1016/j.patcog.2014.01.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hajjami, J., Caracotte, J., Caron, G., Napoleon, T. 2020. ArUcOmni: detection of highly reliable fiducial markers in panoramic images. In: 2020 IEEE-CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE. doi:10.1109/CVPRW50498.2020.00325Google ScholarGoogle ScholarCross RefCross Ref
  15. He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y. 2017. The connected-component labeling problem: A review of state-of-the-art algorithms. In: Journal of Pattern Recognition, Vol. 70, pp. 25–43. Elsevier. doi:10.1016/j.patcog.2017.04.018Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Cabaret, L., Lacassagne, L., Oudni, L. 2015. A review of world's fastest connected component labeling algorithms: Speed and energy estimation. In: Conference on Design and Architectures for Signal and Image Processing (DASIP). IEEE. doi:10.1109/DASIP.2014.7115641Google ScholarGoogle Scholar
  17. Benkrid, K., Sukhsawas, S., Crookes, D. 2003. An FPGA-based image connected component labeler. In: Lecture Notes in Computer Science, vol. 2778, pp. 1012-1015. Springer. doi: 10.1007/978-3-540-45234-8_108Google ScholarGoogle Scholar
  18. Jablonski, M., Gorgon, M. 2004. Handel-C implementation of classical component labelling algorithm. In: Euromicro Symposium on Digital System Design,DSD, IEEE. doi: 10.1109/DSD.2004.1333301Google ScholarGoogle ScholarCross RefCross Ref
  19. Appiah, K., Hunter, A., Dickinson, P., Owens, J. 2008. A run-length based connected component algorithm for FPGA implementation. In Proceedings of the 2008 International Conference on Field-Programmable Technology, ICFPT 2008, pp. 177-184. IEEE. doi: 10.1109/FPT.2008.4762381Google ScholarGoogle ScholarCross RefCross Ref
  20. Zhou, H., Dou, R., Cheng, L., Liu, J., Wu, N. 2022. A provisional labels-reduced, real-time connected component labeling algorithm for edge hardware. In: IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69 (6), pp. 2997-3001. IEEE. doi:10.1109/tcsii.2022.3152783Google ScholarGoogle ScholarCross RefCross Ref
  21. Schwenk, K., Huber, F. 2015. Connected component labeling algorithm for very complex and high-resolution images on an FPGA platform. In Proceedings of the SPIE High-Performance Computing in Remote Sensing, vol. 964603, pp. 964603-02, SPIE. doi:10.1117/12.2194101Google ScholarGoogle Scholar
  22. Appiah, K., Hunter, A., Dickinson, Meng, H. 2010. Accelerated hardware video object segmentation: From foreground detection to connected components labeling. In: Computer Vision and Image Understanding, vol. 114, pp. 1282–1291. Elsevier. doi: 10.1016/j.cviu.2010.03.021Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Zhao, C., Gao, W., Nie, Fe. 2020.A memory-efficient hardware architecture for connected component labeling in embedded system. In: IEEE Transactions on Circuits and Systems for Video Technology, vol. 30 (9), IEEE. doi: 10.1109/TCSVT.2019.2937189Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Bailey, D. G., Klaiber, M. J. 2019.Zig-zag based single-pass connected components analysis. In: Journal of Imaging, vol. 5 (4). MDPI. doi: 10.3390/jimaging5040045Google ScholarGoogle ScholarCross RefCross Ref
  25. Tang, J.W., Shaikh-Husin, N., Sheikh, U. U., Marsono, M. N. 2018. A linked list run-length-based single-pass connected component analysis for real-time embedded hardware, In: ACM Journal of Real-Time Image Processing, vol. 15 (1), pp. 197-215. Springer. doi: 10.1007/s11554-016-0590-2Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Klaiber, M. J. Bailey, D. G. Baroud, Y. O. Simon, S. 2016. A resource-efficient hardware architecture for connected component analysis, In: IEEE Transactions on Circuits and Systems for Video Technology, vol. 26 (7), pp. 1334-1349. IEEE. doi: 10.1109/TCSVT.2015.2450371Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Zhao, F., Zhang L. H., Zhi, Y. Z.. 2013. Real-time single-pass connected components analysis algorithm, In: EURASIP Journal on Image and Video Processing, vol. 2013, pp. 1-10. Springer. doi: 10.1186/1687-5281-2013-21Google ScholarGoogle Scholar
  28. Bailey, D. G. 2010. Chain coding streamed images through crack run-length encoding, In: 25th International Conference Image and Vision Computing New Zealand, IEEE. doi: 10.1109/IVCNZ.2010.6148812Google ScholarGoogle ScholarCross RefCross Ref
  29. Johnston, C.T. Bailey, D. G. 2008. FPGA implementation of a single pass connected components algorithm, In: Proceedings - 4th IEEE International Symposium on Electronic Design, Test and Applications, DELTA 2008, pp. 228-231. IEEE. doi: 10.1109/DELTA.2008.21Google ScholarGoogle ScholarCross RefCross Ref
  30. Trein, J., Schwarzbacher, A. Th., Hoppe, B., Noffz, K.-H., Trenschel, T. 2007. Development of a FPGA based real-time blob analysis circuit. In: Irish Signals and Systems Conference (ISSC), Derry, UK (2007), pp. 121–126.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICVIP '22: Proceedings of the 2022 6th International Conference on Video and Image Processing
    December 2022
    189 pages
    ISBN:9781450397568
    DOI:10.1145/3579109

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 14 March 2023

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)18
    • Downloads (Last 6 weeks)2

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format