skip to main content
10.1145/3579856.3596441acmconferencesArticle/Chapter ViewAbstractPublication Pagesasia-ccsConference Proceedingsconference-collections
keynote

Model Stealing Attacks and Defenses: Where Are We Now?

Published: 10 July 2023 Publication History

Abstract

The success of deep learning in many application domains has been nothing short of dramatic. This has brought the spotlight onto security and privacy concerns with machine learning (ML). One such concern is the threat of model theft. I will discuss work on exploring the threat of model theft, especially in the form of “model extraction attacks” — when a model is made available to customers via an inference interface, a malicious customer can use repeated queries to this interface and use the information gained to construct a surrogate model. I will also discuss possible countermeasures, focusing on deterrence mechanisms that allow for model ownership resolution (MOR) based on watermarking or fingerprinting. In particular, I will discuss the robustness of MOR schemes. I will touch on the issue of conflicts that arise when protection mechanisms for multiple different threats need to be applied simultaneously to a given ML model, using MOR techniques as a case study.
This talk is based on work done with my students and collaborators, including Buse Atli Tekgul, Jian Liu, Mika Juuti, Rui Zhang, Samuel Marchal, and Sebastian Szyller. The work was funded in part by Intel Labs in the context of the Private AI consortium.

Cited By

View all

Index Terms

  1. Model Stealing Attacks and Defenses: Where Are We Now?

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ASIA CCS '23: Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security
      July 2023
      1066 pages
      ISBN:9798400700989
      DOI:10.1145/3579856
      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 10 July 2023

      Check for updates

      Author Tags

      1. Machine learning
      2. fingerprinting
      3. model extraction
      4. robustness.
      5. watermarking

      Qualifiers

      • Keynote
      • Research
      • Refereed limited

      Conference

      ASIA CCS '23
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 418 of 2,322 submissions, 18%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 241
        Total Downloads
      • Downloads (Last 12 months)103
      • Downloads (Last 6 weeks)14
      Reflects downloads up to 28 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media