skip to main content
10.1145/3580305.3599317acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article
Free Access

Dual-view Molecular Pre-training

Published:04 August 2023Publication History

ABSTRACT

Molecular pre-training, which is about to learn an effective representation for molecules on large amount of data, has attracted substantial attention in cheminformatics and bioinformatics. A molecule can be viewed as either a graph (where atoms are connected by bonds) or a SMILES sequence (where depth-first-search is applied to the molecular graph with specific rules). The Transformer and graph neural networks (GNN) are two representative methods to deal with the sequential data and the graphic data, which can globally and locally model the molecules respectively and are supposed to be complementary. In this work, we propose to leverage both representations and design a new pre-training algorithm, dual-view molecule pre-training (briefly, DVMP), that can effectively combine the strengths of both types of molecule representations. DVMP has a Transformer branch and a GNN branch, and the two branches are pre-trained to maintain the semantic consistency of molecules. After pre-training, we can use either the Transformer branch (this one is recommended according to empirical results), the GNN branch, or both for downstream tasks. DVMP is tested on 11 molecular property prediction tasks and outperforms strong baselines. Furthermore, we test DVMP on three retrosynthesis tasks and it achieves state-of-the-art results. Our code is released at https://github.com/microsoft/DVMP.

Skip Supplemental Material Section

Supplemental Material

rtfp0449-2min-promo.mp4

mp4

6.5 MB

References

  1. Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual conference on Computational learning theory. 92--100.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Shuan Chen and Yousung Jung. 2021. Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention. JACS Au, Vol. 1, 10 (2021), 1612--1620. https://doi.org/10.1021/jacsau.1c00246 PMID: 34723264.Google ScholarGoogle ScholarCross RefCross Ref
  3. Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In International conference on machine learning. PMLR, 1597--1607.Google ScholarGoogle Scholar
  4. Seyone Chithrananda, Gabe Grand, and Bharath Ramsundar. 2020. ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction. arXiv preprint arXiv:2010.09885 (2020).Google ScholarGoogle Scholar
  5. Connor W Coley, Luke Rogers, William H Green, and Klavs F Jensen. 2017. Computer-assisted retrosynthesis based on molecular similarity. ACS central science, Vol. 3, 12 (2017), 1237--1245.Google ScholarGoogle Scholar
  6. Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning, Vol. 20, 3 (1995), 273--297.Google ScholarGoogle Scholar
  7. Hanjun Dai, Chengtao Li, Connor W Coley, Bo Dai, and Le Song. 2019. Retrosynthesis prediction with conditional graph logic network. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. dtextquotesingle Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.Google ScholarGoogle Scholar
  8. Laurianne David, Amol Thakkar, Rocío Mercado, and Ola Engkvist. 2020. Molecular representations in AI-driven drug discovery: a review and practical guide. Journal of Cheminformatics, Vol. 12, 1 (2020), 1--22.Google ScholarGoogle ScholarCross RefCross Ref
  9. David L Davies and Donald W Bouldin. 1979. A cluster separation measure. IEEE transactions on pattern analysis and machine intelligence 2 (1979), 224--227.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).Google ScholarGoogle Scholar
  11. Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for Speech Recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 5884--5888. https://doi.org/10.1109/ICASSP.2018.8462506Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In International Conference on Learning Representations. https://openreview.net/forum?id=YicbFdNTTyGoogle ScholarGoogle Scholar
  13. Benedek Fabian, Thomas Edlich, Héléna Gaspar, Marwin Segler, Joshua Meyers, Marco Fiscato, and Mohamed Ahmed. 2020a. Molecular representation learning with language models and domain-relevant auxiliary tasks. arXiv preprint arXiv:2011.13230 (2020).Google ScholarGoogle Scholar
  14. Benedek Fabian, Thomas Edlich, Héléna Gaspar, Marwin Segler, Joshua Meyers, Marco Fiscato, and Mohamed Ahmed. 2020b. Molecular representation learning with language models and domain-relevant auxiliary tasks. In Machine Learning for Molecules Workshop at NeurIPS 2020.Google ScholarGoogle Scholar
  15. Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo Zhou, Fan Wang, Hua Wu, and Haifeng Wang. 2022. Geometry-enhanced molecular representation learning for property prediction. Nature Machine Intelligence, Vol. 4, 2 (01 Feb 2022), 127--134. https://doi.org/10.1038/s42256-021-00438-4Google ScholarGoogle ScholarCross RefCross Ref
  16. Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. 2020a. Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 21271--21284. https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdfGoogle ScholarGoogle Scholar
  17. Jean-Bastien Grill, Florian Strub, Florent Altché , Corentin Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. 2020b. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020).Google ScholarGoogle Scholar
  18. R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimensionality Reduction by Learning an Invariant Mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), Vol. 2. 1735--1742. https://doi.org/10.1109/CVPR.2006.100Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view representation learning on graphs. In International Conference on Machine Learning. PMLR, 4116--4126.Google ScholarGoogle Scholar
  20. Jiazhen He, Felix Mattsson, Marcus Forsberg, Esben Jannik Bjerrum, Ola Engkvist, Christian Tyrchan, Werngard Czechtizky, et al. 2021. Transformer Neural Network for Structure Constrained Molecular Optimization. (2021).Google ScholarGoogle Scholar
  21. Jiyan He, Keyu Tian, Shengjie Luo, Yaosen Min, Shuxin Zheng, Yu Shi, Di He, Haiguang Liu, Nenghai Yu, Liwei Wang, Ji Wu, and Tie-Yan Liu. 2022. Masked Molecule Modeling: A New Paradigm of Molecular Representation Learning for Chemistry Understanding. https://doi.org/10.21203/rs.3.rs-1746019/v1Google ScholarGoogle Scholar
  22. Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9729--9738.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770--778.Google ScholarGoogle ScholarCross RefCross Ref
  24. Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition, Vol. 1. IEEE, 278--282.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Shion Honda, Shoi Shi, and Hiroki R Ueda. 2019. SMILES transformer: pre-trained molecular fingerprint for low data drug discovery. arXiv preprint arXiv:1911.04738 (2019).Google ScholarGoogle Scholar
  26. Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Networks. In International Conference on Learning Representations. https://openreview.net/forum?id=HJlWWJSFDHGoogle ScholarGoogle Scholar
  27. Ye Hu, Dagmar Stumpfe, and Jürgen Bajorath. 2016. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry. Journal of Medicinal Chemistry, Vol. 59, 9 (2016), 4062--4076. https://doi.org/10.1021/acs.jmedchem.5b01746 PMID: 26840095.Google ScholarGoogle ScholarCross RefCross Ref
  28. Bing Huang and O Anatole Von Lilienfeld. 2016. Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity.Google ScholarGoogle ScholarCross RefCross Ref
  29. Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning. PMLR, 448--456.Google ScholarGoogle Scholar
  30. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  31. Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).Google ScholarGoogle Scholar
  32. Greg Landrum. 2013. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling.Google ScholarGoogle Scholar
  33. Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020b. Deepergcn: All you need to train deeper gcns. arXiv preprint arXiv:2006.07739 (2020).Google ScholarGoogle Scholar
  34. Pengyong Li, Jun Wang, Yixuan Qiao, Hao Chen, Yihuan Yu, Xiaojun Yao, Peng Gao, Guotong Xie, and Sen Song. 2020a. Learn molecular representations from large-scale unlabeled molecules for drug discovery. arXiv preprint arXiv:2012.11175 (2020).Google ScholarGoogle Scholar
  35. Yi-Lun Liao and Tess Smidt. 2023. Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs. In The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=KwmPfARgOTDGoogle ScholarGoogle Scholar
  36. Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang Luu Nguyen, Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande. 2017. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science, Vol. 3, 10 (2017), 1103--1113.Google ScholarGoogle Scholar
  37. Shengchao Liu, Mehmet F Demirel, and Yingyu Liang. 2019a. N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. dtextquotesingle Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/2f3926f0a9613f3c3cc21d52a3cdb4d9-Paper.pdfGoogle ScholarGoogle Scholar
  38. Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang. 2022. Pre-training Molecular Graph Representation with 3D Geometry. In International Conference on Learning Representations. https://openreview.net/forum?id=xQUe1pOKPamGoogle ScholarGoogle Scholar
  39. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019).Google ScholarGoogle Scholar
  40. Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Escalera, Fabio Ferreira, Isabelle Guyon, Sirui Hong, Frank Hutter, Rongrong Ji, Julio C Junior, et al. 2021. Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).Google ScholarGoogle Scholar
  41. Hehuan Ma, Yatao Bian, Yu Rong, Wenbing Huang, Tingyang Xu, Weiyang Xie, Geyan Ye, and Junzhou Huang. 2020. Multi-view graph neural networks for molecular property prediction. arXiv preprint arXiv:2005.13607 (2020).Google ScholarGoogle Scholar
  42. Łukasz Maziarka, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj, Jacek Tabor, and Stanisław Jastrzebski. 2020. Molecule attention transformer. arXiv preprint arXiv:2002.08264 (2020).Google ScholarGoogle Scholar
  43. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).Google ScholarGoogle Scholar
  44. Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. 2018. Image Transformer. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 4055--4064. http://proceedings.mlr.press/v80/parmar18a.htmlGoogle ScholarGoogle Scholar
  45. Giorgio Pesciullesi, Philippe Schwaller, Teodoro Laino, and Jean-Louis Reymond. 2020. Transfer learning enables the molecular transformer to predict regio-and stereoselective reactions on carbohydrates. Nature communications, Vol. 11, 1 (2020), 1--8.Google ScholarGoogle Scholar
  46. Ladislav Rampávs ek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini. 2022. Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information Processing Systems, Vol. 35 (2022), 14501--14515.Google ScholarGoogle Scholar
  47. Bharath Ramsundar, Peter Eastman, Patrick Walters, and Vijay Pande. 2019. Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more. O'Reilly Media.Google ScholarGoogle Scholar
  48. Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter Abbeel, and Yun S Song. 2019. Evaluating protein transfer learning with tape. Advances in Neural Information Processing Systems, Vol. 32 (2019), 9689.Google ScholarGoogle Scholar
  49. Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. 2019. FastSpeech: Fast, Robust and Controllable Text to Speech. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. dtextquotesingle Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. https://proceedings.neurips.cc/paper/2019/file/f63f65b503e22cb970527f23c9ad7db1-Paper.pdfGoogle ScholarGoogle Scholar
  50. Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. 2020. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. bioRxiv (2020), 622803.Google ScholarGoogle Scholar
  51. Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang. 2020a. Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information Processing Systems, Vol. 33 (2020), 12559--12571.Google ScholarGoogle Scholar
  52. Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying WEI, Wenbing Huang, and Junzhou Huang. 2020b. Self-Supervised Graph Transformer on Large-Scale Molecular Data. In NeurIPS, Vol. 33. 12559--12571.Google ScholarGoogle Scholar
  53. Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter, Costas Bekas, and Alpha A Lee. 2019. Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science, Vol. 5, 9 (2019), 1572--1583.Google ScholarGoogle Scholar
  54. Seung-Woo Seo, You Young Song, June Yong Yang, Seohui Bae, Hankook Lee, Jinwoo Shin, Sung Ju Hwang, and Eunho Yang. 2021. GTA: Graph Truncated Attention for Retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 1 (May 2021), 531--539. https://doi.org/10.1609/aaai.v35i1.16131Google ScholarGoogle ScholarCross RefCross Ref
  55. Xiaoke Shen, Yang Liu, You Wu, and Lei Xie. 2020. MoLGNN: Self-Supervised Motif Learning Graph Neural Network for Drug Discovery. Machine Learning for Molecules Workshop at NeurIPS 2020 (2020). https://ml4molecules.github.io/papers2020/ML4Molecules_2020_paper_4.pdfGoogle ScholarGoogle Scholar
  56. Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. 2020. A graph to graphs framework for retrosynthesis prediction. In International Conference on Machine Learning. PMLR, 8818--8827.Google ScholarGoogle Scholar
  57. Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan Günnemann, and Pietro Liò. 2021. 3D Infomax improves GNNs for Molecular Property Prediction. arXiv preprint arXiv:2110.04126 (2021).Google ScholarGoogle Scholar
  58. Ruoxi Sun, Hanjun Dai, Li Li, Steven Kearnes, and Bo Dai. 2021. Towards understanding retrosynthesis by energy-based models. Advances in Neural Information Processing Systems, Vol. 34 (2021), 10186--10194.Google ScholarGoogle Scholar
  59. Igor V. Tetko, Pavel Karpov, Ruud Van Deursen, and Guillaume Godin. 2020. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis. Nature Communications, Vol. 11, 1 (04 Nov 2020), 5575. https://doi.org/10.1038/s41467-020-19266-yGoogle ScholarGoogle Scholar
  60. Zhengkai Tu and Connor W. Coley. 2022. Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction. Journal of Chemical Information and Modeling, Vol. 62, 15 (2022), 3503--3513. https://doi.org/10.1021/acs.jcim.2c00321Google ScholarGoogle ScholarCross RefCross Ref
  61. Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research, Vol. 9 (2008), 2579--2605.Google ScholarGoogle Scholar
  62. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. arXiv preprint arXiv:1706.03762 (2017).Google ScholarGoogle Scholar
  63. Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, and Junzhou Huang. 2019. SMILES-BERT: large scale unsupervised pre-training for molecular property prediction. In Proceedings of the 10th ACM international conference on bioinformatics, computational biology and health informatics. 429--436.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. 2022. Molecular contrastive learning of representations via graph neural networks. Nature Machine Intelligence, Vol. 4, 3 (01 Mar 2022), 279--287. https://doi.org/10.1038/s42256-022-00447-xGoogle ScholarGoogle ScholarCross RefCross Ref
  65. David Weininger. 1988. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of chemical information and computer sciences, Vol. 28, 1 (1988), 31--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a benchmark for molecular machine learning. Chemical science, Vol. 9, 2 (2018), 513--530.Google ScholarGoogle Scholar
  67. Chaochao Yan, Qianggang Ding, Peilin Zhao, Shuangjia Zheng, JINYU YANG, Yang Yu, and Junzhou Huang. 2020. RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 11248--11258. https://proceedings.neurips.cc/paper/2020/file/819f46e52c25763a55cc642422644317-Paper.pdfGoogle ScholarGoogle Scholar
  68. Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. 2019. Analyzing learned molecular representations for property prediction. Journal of chemical information and modeling, Vol. 59, 8 (2019), 3370--3388.Google ScholarGoogle ScholarCross RefCross Ref
  69. Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. 2020. Graph Contrastive Learning with Augmentations. In NeurIPS.Google ScholarGoogle Scholar
  70. Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Min Wu, Tingjun Hou, and Mingli Song. 2022. Root-aligned SMILES: a tight representation for chemical reaction prediction. Chemical Science, Vol. 13 (2022), 9023--9034. Issue 31. https://doi.org/10.1039/D2SC02763AGoogle ScholarGoogle ScholarCross RefCross Ref
  71. Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li, and Tie-Yan Liu. 2020. Incorporating BERT into Neural Machine Translation. In International Conference on Learning Representations. https://arxiv.org/abs/2002.06823Google ScholarGoogle Scholar

Index Terms

  1. Dual-view Molecular Pre-training

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          KDD '23: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
          August 2023
          5996 pages
          ISBN:9798400701030
          DOI:10.1145/3580305

          Copyright © 2023 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 4 August 2023

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,133of8,635submissions,13%

          Upcoming Conference

          KDD '24
        • Article Metrics

          • Downloads (Last 12 months)777
          • Downloads (Last 6 weeks)88

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader