arXiv:2211.04351v1 [cs.DC] 8 Nov 2022

The ERA Theorem for Safe Memory Reclamation

Gali Sheffi

sheffiga@gmail.com
Department of Computer Science, Technion
Haifa, Israel

ABSTRACT

Safe memory reclamation (SMR) schemes for concurrent data
structures offer trade-offs between three desirable properties:
ease of integration, robustness, and applicability. In this paper
we rigorously define SMR and these three properties, and we
present the ERA theorem, asserting that any SMR scheme
can only provide at most two of the three properties.

KEYWORDS

concurrency, safe memory reclamation, lock-freedom, robust-
ness

1 INTRODUCTION

Managing memory for concurrent data structures is known
to be non-trivial. The main problem is that a node n that is
detached from the data structure and is headed for reclama-
tion, may still be accessed by concurrent threads that gained
access to n prior to its detachment. Once a detached node is
reclaimed, the executing threads are in danger of accessing
freed memory, potentially causing a system crash, a segmen-
tation fault, or correctness failure [31, 32]. This problem can
be prevented using a rigid access discipline with locking, but
such locking is not typically used because it is often detrimen-
tal to performance, and because locking foils the progress
guarantee of non-blocking data structures.

To deal with this problem, SMR schemes were presented.
The task of an SMR scheme is to either prevent hazardous
accesses, or delay the reclamation of nodes that are still ac-
cessible by concurrent threads. With an SMR scheme, nodes
are first manually retired, announcing that they are candidates
for reclamation (and re-allocation) and the SMR scheme is
responsible for determining when a retired node can be safely
reclaimed and reused. Retired nodes are typically held in
pair-thread retire lists [19, 32, 36, 37, 39, 45] until they are
eligible for reclamation.

Each SMR comes with some benefits over existing schemes,
but also with some disadvantages for the concurrent system.
In this paper we focus on three good properties that have been
mentioned in prior work: Ease of integration, Robustness, and

Conference’l7, July 2017, Washington, DC, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/ XXX XX XX . XXXXXXX

Erez Petrank
erez@cs.technion.ac.il
Department of Computer Science, Technion
Haifa, Israel

wide Applicability (ERA, in short). We define these proper-
ties formally, and present a theorem, asserting that it is not
possible for any SMR scheme to deliver all three qualities.

Concurrent data-structure implementations usually adhere
to some correctness criteria, typically, linearizability [25],
and provide some progress guarantee, typically lock-freedom
or wait-freedom [21, 23]. Interestingly, there is no analogue
widely accepted correctness criteria for SMR implementa-
tions. Various works have phrased ad-hoc correctness condi-
tions [5, 14, 27-29, 32]. For example, [32, 36, 45] introduce
the terms protection, or hazardous access, which are specific
to the SMR scheme they present, but are not adequate for
other schemes. Some previous work prove ad-hoc properties
that relate to correctness [37, 39, 45], but there is no correct-
ness condition that is applicable to all SMR techniques in the
literature. Clearly, a reclamation scheme should preserve the
original implementation’s correctness (e.g., linearizability)
and it is desirable to also keep its progress guarantee. The
notion of safety is often used, but with no rigorous acceptable
definition available. For example, safety may be interpreted as
preventing access to reclaimed memory, but then, optimistic
methods [10, 11, 37], that allow access to reclaimed data, may
erroneously be considered as unsafe.

In addition to the lack of an adequate definition for safe
memory reclamation, there are also some properties of SMR
schemes that have never been rigorously defined. Previous
works [27, 35, 39] listed various desirable SMR properties,
which are often used to evaluate the overall quality of an
SMR scheme. The most natural properties that we care about
include performance (and scalability), progress guarantee,
applicability to a wide set of concurrent data-structure imple-
mentations, the ease of integration with a given concurrent
data structure, and the memory footprint, a.k.a. robustness.
While some of these properties are intuitively clear, most of
them were not formally defined. Moreover, robustness was
only recently introduced, only in the scope of memory recla-
mation [5, 14], and is sometimes used to mean different things.
Let us briefly discuss the three notions that are at the focus of
this paper.

Defining wide applicability is not straightforward. It is not
always easy to tell if a given SMR scheme is applicable to
a given data structure. For example, it is not trivial to see
that the Hazard Pointers (HP) method [32] and some of its

https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA

extensions [34, 36, 45] are not applicable to Harris’s linked-
list [19], and it is not clear how to test HP’s applicability to a
new data structure. While the applicability notion has been
considered previously [10, 27, 37, 39], it was never formally
defined.

Robustness has two different meanings in the literature.
According to Dice et al. [14], an SMR scheme is considered
as robust if there is a bound on the number of retired objects
that cannot be reclaimed. According to Balmau et al. [5], the
number of reclamation-related computational steps should
be bounded. While the first definition has subsequently been
more widely accepted [37, 39, 45], both suffer from their in-
formality. First, the bound is not defined. It is unclear whether
it should be a constant, or whether it may depend on the size
of the data structure, or even the execution length, and in
what way. If the data structure requires space, exponential
in the number of insert operations, is it robust? If a scheme
exhausts the heap even with small data structures, is it robust?
Furthermore, what does "cannot be reclaimed" mean? Various
SMR schemes are driven by different reclamation triggers,
and a reclamation of a certain set of objects may be post-
poned, regardless of safety. Moreover, the terminology in ex-
isting definitions is not obvious. What is a reclamation-related
step? Some SMR schemes change the original implementa-
tion’s layout fundamentally, making the difference between
the original implementation steps and the newly inserted ones
ambiguous. We feel that a formal definition of robustness is
missing. The definition should rigorously clarify the concept
of memory overhead for SMR schemes.

Finally, we look at how difficult it is to integrate an SMR
scheme into a given data structure, i.e., at ease of integration.
An SMR scheme typically provides a set of API operations
that should be inserted into the given code (e.g., alloc(), re-
tire(), beginOperation() [16, 19, 45]). Sometimes, the integra-
tion also involves changing the original program. E.g., the
Automatic Optimistic Access (AOA) scheme [10] requires
the data structure to be in a normalized form [42] for the
integration. Free Access (FA) [9] and Neutralization-Based
Reclamation (NBR) [39] require that the code is divided into
separate read and write phases, and Version-Based Reclama-
tion (VBR) [37] provides a designated mechanism for adding
code checkpoints. Note that wide applicability and easy inte-
gration are independent properties. A scheme can be easily
integrated to any given code, but, still, not be applicable to
some data-structure implementations.

In this paper, we formally define safe memory reclamation,
along with the three desirable properties: robustness, wide
applicability and ease of integration. In addition, we present
and prove the ERA theorem, asserting that the three properties
(Ease of integration, Robustness, and wide Applicability)
cannot co-exist. L.e., any SMR scheme can have at most two
out of the three desirable properties. This paper is organized

Gali Sheffi and Erez Petrank

as follows: Related work is surveyed in Section 2. In Section 3
we specify the shared-memory model. We formally define
safe memory reclamation in Section 4, and the three desirable
properties in Section 5. We present the ERA Theorem in
Section 6, and conclude in Section 7.

2 RELATED WORK

Detailed surveys of SMR schemes appear in the literature [8,
37, 39, 45]. We focus on previous efforts to address and de-
fine suitable correctness conditions for SMR schemes and
desirable reclamation properties. To the best of our knowl-
edge, while there exist formal methods for verifying safety
in manually reclaimed environments [18, 28, 29], and vari-
ous reclamation schemes have been shown to posses highly
desirable properties (e.g., robustness, easy integration and
wide applicability), these notions have never been formally
defined.

Michael [32] and Herlihy et al. [22] were the first to ad-
dress the need in bounding the amount of memory occupied
by removed elements. In both suggested schemes, each thread
has a pool of global pointers (called hazard pointers in [32] or
guards in [22]), used to postpone the reclamation of certain
nodes that might still be in use. Both schemes were designed
to provide an upper bound guarantee on the total number of
deleted nodes that are not yet eligible for reuse at any given
moment. Braginsky et al. [6] suggested a flexible trade-off
between space and runtime overhead suggested by these two
reclamation schemes. The term Robustness was first intro-
duced by Dice et al. [14] and Balmau et al. [5]. While the
first definition put a limit on the number of deleted objects
that could not be reclaimed, the latter bounded the number of
steps during any action related to memory reclamation. Sub-
sequently, the first definition (bounding the space overhead)
was widely adopted [27, 34-37, 39, 45]. However, the bound
on the space overhead was never specified, and so reclamation
schemes with liberal bound (that can potentially exhaust the
available memory) [34, 36, 45] are considered robust. Ref-
erence counting-based schemes [13, 17, 22] are usually not
robust, mainly due to the existence of cyclic structures of
retired objects (these cycles can be broken [12, 41], at the
cost of higher performance overheads).

Although some reclamation schemes are designed for a lim-
ited set of data-structures [6], most methods are designed for
a general, wide set of data-structure implementations. A com-
mon issue which rises in this context is that many allegedly
general schemes [32, 34, 36, 40, 45] require restricted access
to deleted nodes. I.e., traversing a deleted node is forbidden.
This requirement is problematic, as many state-of-the-art lock-
free data-structures allow such traversals [7, 15, 19, 20, 33]
to obtain fast searches. Indeed, this issue was discussed in
various works [8, 10, 16, 27]. An extensive study by Singh et

The ERA Theorem for Safe Memory Reclamation

al. [39] lists many popular lock-free data-structures for which
such schemes are not applicable. Michael [30] suggested
a modification of Harris’s lock-free linked-list [19], which
makes it suitable for these reclamation schemes. However, this
modification reduces the performance of the linked-list (for
more details, see [10]). Furthermore, it is not a universal con-
struction and it cannot be used to modify other data-structures.
Gidenstam et al. [17] suggested a more general solution, but
their construction adds even higher performance overheads,
and involves a complicated manual integration into the given
code. Wide applicability was also referred to as generality
in [34].

Applicability does not guarantee an easy integration. First,
the programmer must issue retire() statements at a location
where the node is already detached from the data structure.
Also, reclamation schemes often require additional integra-
tion. The simplest integration is provided by the seminal EBR
scheme [8, 16, 19], which solely requires inserting calls to ex-
ternal methods in the beginning and end of each data-structure
operation. Other schemes [27, 32, 36, 45] provide a slightly
more complicated interface, which is still relatively easy for
integration. Such interfaces may include an explicit node pro-
tection method (preventing the reclamation of retired nodes
while they are potentially still in use), and read and write
barriers (i.e., code to be executed with any read or write of a
data structure field). Such methods can be automatically inte-
grated into an existing implementation, and do not require a
significant familiarity with the original code. However, some
reclamation schemes (e.g., [8, 10, 11, 37, 39]) require a more
complicated integration procedure. Such schemes may cause
the original algorithm to fail in accessing data structure fields
and retry. This implies control flow changes to determine
where to branch when such a failure occurs. Such integration
is non-trivial, and it requires a deep understanding of the un-
derlying data structure. Automatic integration is no longer
possible. However, as the ERA Theorem asserts (see Sec-
tion 6), such harder integration efforts are required to obtain
general applicability and a low space overhead.

In addition to performance, robustness, wide applicability,
and easy integration, other reclamation properties have been
considered in previous work. Singh et al. [39], considered
consistency, which requires the overall performance to not
be affected by workload changes or under a system over-
subscription. Nikolaev and Ravindran [35] claimed that a
reclamation scheme should be transparent. Meaning, threads
can be created and deleted dynamically throughout the exe-
cution, and without affecting the scheme’s safety. Cohen and
Petrank introduced an optimistic reclamation method [10, 11],
which allows threads to read reclaimed memory, while taking
care to preserve correctness. Such schemes provide strong
robustness and high throughput. Sheffi et al. [37] extended

Conference’17, July 2017, Washington, DC, USA

optimistic access to writes, providing a fully optimistic solu-
tion.

In addition to ensuring desirable properties, avoiding com-
mon unwanted side affects is also important. Many recla-
mation schemes introduce significant memory overheads, as
they add extra fields to the data-structure nodes’ layout. E.g.,
epoch-related data [36, 37, 45], or reference counters [13, 17,
22]. Optimistic methods rely on type-preservation [10, 11,
37], which means that nodes should be re-allocated to the
same type. This is adequate particularly when there is a small
number of major data structures in the code. Some reclama-
tion algorithms require special compiler or hardware support
(and therefore, are not considered as self-contained [27]). E.g.,
DEBRA+ [8] and NBR [39] rely on lock-free OS signals to
preserve lock-freedom, VBR [37, 38] and Hyaline [34] rely
on a hardware-provided wide CAS instruction, StackTrack [2]
and ThreadScan [3] rely on transactional memory, Dice et
al. [14] and PEBR [27] rely on the existence of process-wide
memory fences, and QSense [5] requires control over the OS
scheduler.

3 PRELIMINARIES

We follow previous work and use the basic asynchronous
shared memory model from [21], and related definitions
from [25]. We consider a fixed set of N executing threads,
communicating by applying operations on shared objects. An
object is an instance of an abstract data type, which specifies
a set of possible values, and a set of operations that provide
the only means to access it. For example, we define the set
data type as a set of integer keys (denoted as set keys), initially
empty. Its associated operations are insert(key), delete(key)
and contains(key), where key is an integer. The insert(key)
operation inserts key into the set and returns true if the set
does not already contain key, and returns false otherwise. The
delete(key) operation removes key from the set and returns
true if the set indeed contains key, and returns false otherwise.
The contains(key) operation returns true if the set contains
key, and returns false otherwise.

Implementations and Data-Structures. An implementation
of an object (or several objects) provides a data-representation
by applying primitive memory access operations (e.g., reads,
writes, atomic read-modify-write instructions [21]) on a set
of base objects (i.e., shared memory locations). Specifically,
set objects are represented by shared data-structures. Each
set key is represented by a node, and each data-structure has
a fixed set of entry points (e.g., a linked-list head [19] or a
tree root [33]), which are node pointers. Nodes may contain
node pointer fields. We say that a node m is a successor of
a node n (or that n is a predecessor of m) if at least one of
n’s node pointer fields points to m. Accordingly, we say that
a node m is reachable from a node n if there exist nodes

Conference’17, July 2017, Washington, DC, USA

ng, N1, ..., ng such that (1) n = ngy, (2) m = ng, and (3) for
every 0 < i < k, n; is a predecessor of n;,;. We say that a
certain node is reachable if it is reachable from an entry point.

Executions. A step is either a shared-memory access, a
local variable access, an operation invocation, or the return
from an operation. In all cases, the step includes the executing
thread id, the accessed object (when exists), and the respec-
tive access input and output values. Steps are considered to
be atomic. A configuration specifies the value of each shared
memory address and the state of each thread (including the
content of its local variables and program counter). The initial
configuration Cy is the configuration in which all memory
addresses have their initial values and all threads are in their
initial states. In particular, all data-structures are initialized,
and represent empty sets. An execution E=Cp-s;-Cy-...1s
an alternating sequence of configurations and steps, starting
from the initial configuration. Specifically, an execution of an
implementation is an execution where, starting from the initial
configuration, each step is issued according to the given imple-
mentation, each memory read matches the preceding configu-
ration, and each memory write is reflected in the following
configuration. Given a sub-sequence E' = Cg*Sk41-- - - Sm - Crm,
we say that E’ is a solo-run if the steps sg.1, Sk+2; - - - » Sm are
executed by the same thread.

Histories. An execution is modeled by its history, which is
its sub-sequence of operation invocation and response steps.
Given an implementation, its set of derived histories is the set
of all histories that model executions of that implementation.
Given a history H and a thread T, we denote with H|T the sub-
history of H, consisting of exactly all the steps executed by T
in H. Similarly, given a history H and a shared object O (may
be a memory word or a data-structure as described above), we
denote with H|O the sub-history of H, consisting of exactly all
the steps executed on O in H. Accordingly, given a history H,
a thread T and a shared object O, we denote with H|(T, O) the
sub-history of H, consisting of exactly all the steps executed
by T on O in H. Two histories H, H’ are equivalent if for
every thread T, it holds that H|T = H'|T.

Given a history H and an object O, we say that H|O is
sequential if it begins with an invocation step, and each invo-
cation step (except for possibly the last one) is immediately
followed by its matching response. We say that a history H is
a sequential history if for every object O, H|O is sequential.
An object is associated with a sequential specification, which
is a prefix-closed set of all of its possible sequential histories.

Given a history H that contains an operation invocation,
we say that this operation is complete in H if H also contains
its matching response. Otherwise, we say that this operation
is pending in H. A history is complete if all of its contained
operations are complete.

Gali Sheffi and Erez Petrank

Well-Formed Histories. The standard definition of well-
formed histories [25] assumes that, given a history H and
a thread T, H|T is a sequence of operation invocations and
their immediate matching responses. However, describing
the integration of a safe memory reclamation scheme into a
given data-structure implementation requires nesting opera-
tions. Le., the reclamation scheme’s operations (e.g., retire(),
alloc()) are called in the scope of the data-structure opera-
tions. Therefore, we cannot use the standard definition of
well-formed histories from [25]. Instead, we follow the ex-
tended definition from [4]. Given a history H and an object O,
we say that H|O is well-formed if for every thread T, H|(T, O)
starts with an invocation step, and is an alternating sequence
of invocation steps and their immediate matching response.
We say that a history H is well-formed if (1) for every object
O, H|O is well-formed, and (2) for every thread T, two of
its invocation Steps Siny,, Siny, and their respective matching
IESPONSE SEPS Sres,, Sres,» 1f Siny, precedes sinq, and si,q, pre-
cedes syes, in H, then s,¢, precedes s,es, in H. A well-formed
implementation is an implementation for which all derived
histories are well-formed.

Linearizability. A complete history H is linearizable if it is
well-formed, and for every object O, its sequential specifica-
tion contains a sequential history S such that (1) H|O and S are
equivalent, and (2) if a response step precedes an invocation
step in H|O, then it also precedes it in S. A history H is lin-
earizable if it can be completed (by adding matching response
steps to a subset of pending operations in H, and removing
the rest of H’s pending operations) to a linearizable complete
history. A linearizable implementation is an implementation
for which all derived histories are linearizable.

Lock-Freedom. We follow Herlihy and Shavit’s definition
of lock-freedom [23]. Given an execution E = Cj - s; -
and an executing thread T, we say that T is effective in a
configuration C; if T performs the step s; for some j > i
(informally, T is not starved by the scheduler). Now, let s; be
an operation invocation by a thread T during an execution E.
We say that s is effective if either s; has a matching response
step in E, or T is effective in Cy, for every m > k.

A history H provides minimal progress if in every suffix
of H, some pending effective invocation has a matching re-
sponse. H provides maximal progress if in every suffix of H,
every pending effective invocation has a matching response.
An implementation is lock-free if every respective history pro-
vides minimal progress, and some respective history provides
maximal progress.

The ERA Theorem for Safe Memory Reclamation

4 DEFINING SAFE MEMORY
RECLAMATION

In this section we present a formal definition of safe mem-
ory reclamation. For ease of presentation, we focus on data-
structures that implement set objects. This allows defining a
life cycle of a node in the data structure. Extensions to other
object types are not difficult.

4.1 Nodes’ Life-Cycles

Following Meyer and Wolff [28, 29] we assume that (for a
set implementation) each node goes through stages in a life-
cycle, and can be in one of four possible states: unallocated,
local, shared, or retired. Initially, a node is unallocated. 1.e.,
its memory is not available for use by the executing threads.
After being allocated by a certain thread, the node becomes
local. While being local, no thread but the allocating thread
has access to this node. In particular, the node cannot be
reachable (from an entry point of the data structure), and it
cannot represent a set item at this stage. Next, the node may or
may not become shared (e.g., by making it reachable). While
being shared, the node may become alternately reachable and
unreachable, and may also represent a set item. When a node
is either local or shared, we also say that it is active. At some
point, an executing thread may retire the node, announcing
that this node is about to become garbage. Once a thread re-
tires the node, it becomes retired (and cannot be retired again).
Note that some nodes never become shared, and therefore
become retired after being local. In the lifetime of a node,
we assume that a node always becomes unreachable before it
becomes retired (generally, nodes can only be reachable while
they are shared'). Finally, a retired node may be reclaimed,
meaning that its memory may now be used for re-allocation
and its state becomes unallocated again. We consider nodes
as logical entities. L.e., after a node returns to being unallo-
cated, a new allocation from the same address is considered
as an allocation of a different node (even if both nodes are
allocated on the same address).

4.2 Safe and Unsafe Memory Accesses

In this section we define a safe memory access. We think of
the memory as segregated into two separate spaces — the sys-
tem space and the program space. The program space is the
area in which the executing threads keep their local and shared
nodes and variables. In particular, new allocations are always
within the program space, and all nodes reside in the program
space, until they are reclaimed. At the time of reclamation,
the memory reclamation scheme decides whether to keep the
reclaimed nodes for potential subsequent re-allocation in the
program space, or to return the node space to the system,

IThis assumption is necessary for most safe memory reclamation schemes.
However, there exist scenarios in which it is not needed [44].

Conference’17, July 2017, Washington, DC, USA

in which case, the node moves to system space. If the pro-
gram attempts to access a node in system space, the result is
undefined, and may include a segmentation fault.

From now on, we refer to a given set implementation (with
no memory reclamation) as the plain implementation. Note
that although plain implementations do not include memory
reclamation, they do follow the life cycle defined in Sec-
tion 4.1. Specifically, they include adequate retire() instruc-
tions. Upon integrating a given memory reclamation scheme
into a plain implementation, we refer to the derived imple-
mentation as the integrated implementation. We further use
the plain and integrated terms to describe the respective exe-
cutions and histories.

Dereferencing a pointer p means reading or updating a
value in a node whose address is stored in the pointer p.> After
memory is reclaimed, dereferencing a pointer to it might cause
a segmentation fault [31]. Given an execution E = Cy-s;1-...,a
pointer variable p, and any configuration C,, in the execution
(m > 1), let s; be the last update of p in the sub-execution
Co - s1+...Cp. Namely, for i < m, p is updated in s;, and
for every i < j < m, sj does not update p. The update of p
in s; may be an allocation of a new node to p or a pointer
assignment to p from another pointer g.>

Let n be the node that is referenced by p in C,,,. We separate
into two cases according to whether s; is an allocation or an
assignment. If the last update of p is an allocation in s;, and the
node is not in an unallocated state in any of the intermediate
configurations C; (for i < j < m), then we say that p is valid
in Cp,. Otherwise, we say that p is invalid in C,,. For example,
by definition, p is always valid in C;. The second case is that s;
is a pointer assignment, and let g be the pointer whose content
is assigned into p in s;. Similarly, we say that p is valid in Cy,
if g is valid in C;, and for all intermediate configurations C;
fori < j < m, nis notin an unallocated state in C;. If p is
not valid in C,,,, we say that p is invalid in C,,. We can now
formally define a safe memory accesses.

Definition 4.1. A memory access is unsafe if it derefer-
ences an invalid pointer. It is safe otherwise.

4.3 Defining SMR in the Presence of Unsafe
Memory Accesses

When designing a memory reclamation scheme, one must
either provide an adequate solution for coping with unsafe
memory accesses, or make sure that all memory accesses are

2Note that the pointer content is not necessarily equal to the stored address
(e.g., marked pointers [19] contain addressees, possibly along with a marked
bit).

3In the following clean formalization, we assume no address arithmetic, and
that a pointer points to the head of the object. One can easily extend the
definitions below to programs that use pointer arithmetic, as long as there is
a clear mapping from pointers to nodes.

Conference’17, July 2017, Washington, DC, USA

safe. Some SMR schemes allow unsafe memory accesses,
while taking care to preserve correctness. E.g., AOA [10] and
VBR [37] allow reading via invalid pointers, as it is ensured
that stale values are always ignored. VBR further allows try-
ing to update the shared memory via invalid pointers, as it
is guaranteed that the update fails. Definition 4.2 below en-
capsulates the conditions for a memory reclamation scheme
to be considered as a safe one. Loosely speaking, an SMR
should either only use safe memory accesses, or be very care-
ful in how it executes unsafe memory accesses. In particular,
it should not access system space (that might end up in a
segmentation fault), it should not modify the data on the node
(which might have been reclaimed), and it should not use a
value read during an unsafe memory access.

Definition 4.2. A memory reclamation scheme is a safe
memory reclamation (SMR) scheme with respect to a given
plain implementation, if for each respective integrated exe-
cution E, all memory accesses in all steps are safe, or if all
unsafe memory accesses satisfy the following conditions. Let
s; be a step with an unsafe memory access to a memory node
n via a pointer p, then the following three conditions must
hold:

(1) In configuration C;_1, n’s occupied memory belongs to
the program space.

(2) s; does not update n’s content. Namely, n’s content in
Ci_1 equals n’s content in C;.

(3) If data from the dereferenced node n is read into a
variable or field v (local or shared), then the value in v
is never used.

The term "used" in Condition 3 refers to the standard pro-
gram analysis terminology. In particular, if the modified vari-
able (or field) is read in a step s; (for some j > i), then there
exists i < k < j such that s overwrites the content of this
variable (or field).

Note that we only define safety with respect to a given plain
implementation, as most schemes are not necessarily safe
when integrated with all existing plain implementations. E.g.,
the HP [32] scheme is safe with respect to Michael’s linked-
list [30], but is not safe with respect to Harris’s linked-list [19].
This implies that HP is not applicable to Harris’s linked-
list plain implementation. We further discuss applicability
(and HP’s applicability in particular) in Section 5.3 and in
Appendix E.

S DESIRABLE SMR PROPERTIES

In this section we present formal definitions for three of the
most desirable reclamation scheme properties. Robustness
is defined in Section 5.1, easy integration is defined in Sec-
tion 5.2, and wide applicability is defined in Section and 5.3.
One property may affect another in a design. For example,

Gali Sheffi and Erez Petrank

robustness may affect progress, and preserving progress guar-
antees may affect applicability. But in the definitions, we
separate the notions and define each of them independently
of the others.

5.1 Robustness (Memory Footprint)

Similarly to [37, 39, 45], we adopt the definition of robust-
ness from Dice et al. [14], which relates to the space overhead
or memory footprint of a reclamation scheme. According to
this definition, a reclamation scheme is considered robust
if a failed or delayed thread cannot totally prevent memory
reclamation. This is formalized by a bound on the amount of
retired nodes that exist at any point in the execution. As in Sec-
tion 4.1, retired nodes are nodes that have already been retired,
are not in the state of unallocated. This includes nodes that
cannot be reclaimed (due to some reclamation condition that
the nodes do not satisfy), together with the retired nodes that
have simply not yet been reclaimed, typically because some
periodic process that reclaims objects has not yet processed
them [8, 16, 39].

To the best of our knowledge, previous work does not
specify any general definition for the bound on the number
of such objects. It is not clear whether this bound should be a
pre-defined constant, may depend on the specific execution, or
may depend on the data-structure size. In definitions 5.1-5.2
below we classify the different levels of robustness, according
to the bound that an SMR scheme satisfies.

In the following definitions we consider a bound on the
number of retired objects that depends on the size of the data
structure. The size of the data structure is dynamic and is
bounded by the number of active nodes, i.e., the nodes that
have been allocated and not yet been retired (see Section 4.1).

We first define the class of robust reclamation schemes.
Robustness bounds the number of retired nodes at any time
by a function that is asymptotically smaller than the maxi-
mum size of the data structure so far in the execution, mul-
tiplied by the number of threads. Formally, given an exe-
cution E , we denote the number of active nodes in C; by
activeg(i). In addition, we set the function max_activeg (i)
to be max{activeg(0), ..., activeg(i)}.

Definition 5.1. (Robustness) We say that a reclamation
scheme is robust if for every integrated execution E , there ex-
ists a function fr : N — N, such that (1) fg = o(max_activeg),
and (2) for every configuration C;, the number of retired nodes
in C; is bounded by fg(i) - N.

VBR [37] is robust, with f(i) being a constant function,
bounded by the local retire list size (which does not depend on
the execution). This scheme presents the strongest robustness
available by an SMR today. Its bound does not depend on the
size of the data structure.

The ERA Theorem for Safe Memory Reclamation

HP [32], AOA [10], and NBR [39] all use hazard point-
ers [32] for write protecti0n4. For all three schemes, fr de-
pends on the pre-defined local retire list size (similarly to
VBR) plus the number of hazard pointers. The number of
hazard pointers is typically a small constant (e.g., 3 for linked-
lists [19, 30]), but may also depend on the number of active
nodes (e.g., for skip lists with a dynamic number of levels [1]).
While the number of hazard pointers is not guaranteed to be
asymptotically smaller than the number of live objects, in
all known data structures it is. It is an open question for the
study of hazard pointers to bound their number. If the number
of hazard pointers is always asymptotically smaller than the
number of active nodes, then all three schemes are robust.

Some reclamation schemes do not provide robustness, but
a bound still exists. Accordingly, we define a relaxed term of
robustness, denoted weak robustness, in Definition 5.2 below.
Note that robust schemes are also considered as weakly robust
schemes, but not vice-versa.

Definition 5.2. (Weak Robustness) We say that a reclama-
tion scheme is weakly robust if for every integrated execution
E, there exists a function fz : N — N, such that (1) fg is
polynomial in max_activeg, and (2) for every configuration
C;, the number of retired nodes in C; is bounded by fg(i) - N.

A weakly robust scheme might incur a larger space over-
head. Usually, this happens only at worst-case scenarios, but a
large space overhead is theoretically possible. In some hybrids
of the epoch-based [16, 19] and pointer-based [32] reclama-
tion approaches, the execution is divided into epochs, and the
number of retired nodes is bounded by the number of active
nodes during a certain set of epochs. Given an integrated exe-
cution E and an epoch e, that starts in a configuration Cj, the
total number of active nodes during e is activeg(i) plus the
number of allocations during e. In IBR [45], each thread might
prevent the reclamation of nodes that were active during a
small set of reserved epochs’. As IBR allows only a constant
number of allocations per epoch, the number of retired nodes
in a configuration C; is linear in max_activeg(i) - N (which
is not asymptotically smaller than max_activeg). Therefore,
IBR is weakly robust. EBR [8, 16, 19] is not even weakly
robust. Once a thread is halted, all subsequently allocated
nodes can never be reclaimed.

5.2 Easy Integration

We assume that the plain implementation already contains
proper retire() invocations. l.e., we do not consider retire()
calls installations as part of the reclamation scheme integra-
tion. The obvious easiest integrate-able SMR is the EBR

4The HP scheme uses hazard pointers for read protection as well.
SThere is a trade-off between IBR’s easy integration and the bound on the
number of reserved epochs. For more details, see Section 5.2.

Conference’17, July 2017, Washington, DC, USA

scheme. EBR provides a retire() implementation, along with
two API operations, beginOp() and endOp(), to be respec-
tively inserted in the beginning and end of every data-structure
operation. I.e., any plain implementation can be easily inte-
grated with EBR, and the integration process does not require
an understanding of the plain implementation. A definition of
easily integrated scheme should obviously include EBR, but
other schemes are also not that hard to integrate.

Other examples for easily integrated reclamation methods
are the HP [32] and IBR [45] schemes. Both schemes provide
designated alloc() and retire() implementations, along with
code to replace reading and writing from shared memory. IBR
also provides beginOp() and endOp() implementations, to be
inserted at the beginning and end of each operation, respec-
tively. Although the integration of both schemes is slightly
more complicated than EBR’s, they are still considered as
easily integrated, as their integration does not require any fa-
miliarity with the original code. Note that the IBR authors pro-
vide a weakly robust IBR variant (discussed in Section 5.1),
which cannot by easily integrated according to Definition 5.3
below, as this scheme requires inserting roll-back instructions
(returning to a previous point in the code) for maintaining a
small robustness bound.

Some schemes cannot be easily integrated with many plain
implementations. An important example of integration obsta-
cle is the requirement of an SMR to insert roll-back instruc-
tions for handling unsafe memory accesses. Namely, when
some validation test fails, one needs to return program con-
trol to a point in the code from which it is safe to re-execute.
Roll-backs are something that we rule out for easy integration.
Another undesirable property of an SMR is that it modifies
fields of the data structure. An SMR may add fields to a data
structure node to be used for its own activity, but expect the
SMR to not modity fields that the plain implementation uses.
This modularity, encapsulation of information, and separation
of concerns between the data structure and the SMR activity
are standard principles in software engineering. We stress
that marking a pointer to signify a deleted object as in Harris’
linked-list is not a problem, because this is a modification by
the data structure to support its own deletion activity, that the
SMR is not involved in. In contrast, if the SMR modifies a
data structure field, then the programmer that integrates the
SMR into the data structure must have an intimate acquain-
tance with the fields of the data structure to make sure that the
SMR does not foil the data structure operations correctness of
performance. Such an intimate knowledge, if required during
integration, makes the integration difficult.

Some schemes deal with difficult roll-backs by adhering
to specific code shapes, which allow easier placement of
roll-back mechanisms. AOA [10] requires that the plain im-
plementation is first transformed into a normalized form [43].
NBR [39] requires that the code is first divided into separate

Conference’17, July 2017, Washington, DC, USA

read and write phases (to be further discussed in Section 5.3),
which enable easier rollback call installations. VBR [37] re-
lies on linearizability [25] when installing checkpoints and
roll-back instructions. We define the easy integration prop-
erty more rigorously in Definition 5.3 below. This definition
excludes reclamation schemes that alter the plain implemen-
tation layout and disallows rolling back into wisely chosen
code locations. Consequently, it classifies AOA, FA, NBR and
VBR as reclamation schemes that cannot be easily integrated.
We state the definition and follow up with more explanations.

Definition 5.3. A reclamation scheme is considered an
easily integrated scheme if the following conditions hold:

(1) The reclamation scheme is provided as an object.

(2) The reclamation scheme’s API operations may only be
inserted in the following code locations: (1) upon the
invocation or before the termination of any operation of
the plain implementation, (2) as a replacement to alloc()
and retire() calls, or (3) as a replacement to primitive
memory access operations.

(3) An API operation that replaces a primitive memory ac-
cess operation, should be a linearizable implementation
of that primitive.

(4) The integrated implementation should be well-formed.

(5) The reclamation scheme may add new fields to the
node’s layout and it may access these fields, but it can-
not access any other node fields.

According to Condition 1, the reclamation scheme should
be provided as an object that can be used with all imple-
mentations. L.e., as defined in Section 3, it should provide a
uniform set of API operations, which are the only way to use
its mechanism (for more details, see Section 3). This Condi-
tion also ensures that a reclamation scheme is not adjusted
in order to fit specific plain implementations. Condition 2 en-
sures that the integration procedure is indeed relatively easy
(as in EBR and IBR). Condition 3 treats shared memory ad-
dresses as objects. L.e., each memory address is an object that
provides a set of operations (e.g., read, write, read-modify-
write), usually implemented via atomic primitives. According
to Condition 3, if a reclamation scheme operation replaces
such a primitive, then it should implement it in a linearizable
manner. By the locality property of linearizability [25], this
maintains some level of equivalency between the plain im-
plementation and the integrated one. Condition 4 builds on
Condition 1, and treats the plain implementation and the recla-
mation scheme implementation as implementations of two
separate objects. In particular, the meaning of well-formed
(as in Section 3) in this sense is that the integration cannot
move control from within a reclamation-related operation to
a point in the plain implementation. Namely, rollbacks from a
reclamation API code back into code of the plain implemen-
tation are not allowed. Finally, Condition 5 ensures that the

Gali Sheffi and Erez Petrank

reclamation scheme does not assume anything regarding the
node’s layout, and does not access any of its original fields. It
may only access new fields that it adds to the node.

AOA, NBR and VBR do not satisfy Definition 5.3, as they
do not provide a uniform set of API operations. In particular,
inserting roll-back instructions foils Condition 4, as it moves
control to an external point in the data-structure code before
terminating the current reclamation-related operation execu-
tion. Note that the reclamation API should not include an
explicit reclamation operation, as reclamation is expected to
occur in the scope of the reclamation scheme code.

5.3 Wide Applicability

In this section we define the applicability of a reclamation
scheme to a given plain implementation, and define the wide-
applicability property accordingly. Our applicability defini-
tion includes a proper safety engagement, and a reference to
the plain implementation’s correctness and progress guaran-
tees. We use linearizability [25] as our correctness condition,
but the definition can be easily adapted to fit other correctness
conditions.

Definition 5.4. We say that a reclamation scheme is appli-
cable to a plain implementation if the following hold:

(1) Memory safety: The reclamation scheme is safe with
respect to the plain implementation according to Defi-
nition 4.2.

(2) Correctness: The integrated implementation is lineariz-
able®.

(3) Progress: The integrated implementation provides the
same progress guarantee as the plain implementation.

The progress guarantee of a scheme is determined accord-
ing to [23], and set to the weakest guarantee of any of its
operations. For example, Herlihy and Shavit’s linked-list is
lock-free although its contains() operation is wait-free [24].

Given the definition of applicability of a reclamation scheme
to a plain implementation in Definition 5.4, we now define
strong applicability and wide applicability of a given SMR. A
good property of a reclamation scheme is applicability to as
many data structures as possible.

The seminal EBR scheme [8, 16, 19] is strongly applicable,
as defined in Definition 5.5 below (the full proof appears in
Appendix A). It is the strongest scheme in terms of appli-
cability. The only assumption it makes with respect to the
plain implementation is that retire() instructions are properly
installed (for more details, see Section 4.1).

Note that linearizability (as defined in Section 3) refers to the object im-
plemented by the plain implementation, regardless of integration. Le., the
integrated implementation is linearizable with respect to this object even
when the reclamation scheme cannot be treated as a separate object (see
Section 5.2).

The ERA Theorem for Safe Memory Reclamation

Definition 5.5. (Strong Applicability) We say that a recla-
mation scheme is strongly applicable if it is applicable to
every plain implementation.

While strong applicability is highly desirable, to the best
of our knowledge, EBR is the only scheme that satisfies
it. There are still different extents of applicability for the
various reclamation schemes in the literature. We are inter-
ested in reclamation schemes that, while not applicable to
any imaginable data structure, are still widely applicable to
many known data structures. To accurately define widely ap-
plicable reclamation schemes, we adopt the definition from
previous work [39], that defines a large class of well-known
and widely-used concurrent data-structure implementations
(e.g., [15, 19, 20, 26, 33]), all applicable to the NBR recla-
mation scheme. This class is described in [39] as containing
all data-structure implementations that can be divided into
separate interleaving read and write phases. We provide
the formal definition of this class of data-structure imple-
mentations in Appendix C. We denote such implementations
as access-aware data-structure implementations, and define
wide applicability accordingly:

Definition 5.6. (Wide Applicability) We say that a recla-
mation scheme is widely applicable if it is applicable to all
access-aware data-structure implementations.

Not all SMRs are widely applicable. We show in Appen-
dix E that HP, IBR and HE are not widely applicable.

6 THE ERA THEOREM

In Section 5 we showed that there exists a reclamation scheme
which is both widely applicable and easily integrated (EBR).
Assuming that the number of hazard pointers [32] is asymp-
totically smaller than the data-structure size (see Section 5.1),
there also exists a reclamation scheme which is both robust
and widely applicable (NBR), and a reclamation scheme
which is both robust and easily integrated (HP). In this section
we prove the main theorem of this paper:

THEOREM 6.1. Any memory reclamation scheme can pro-
vide at most two of the following three guarantees: robustness,
easy integration and wide applicability.

In fact, we prove a stronger result, namely that even weak
robustness (see Definition 5.2) cannot be achieved when easy
integration and wide applicability are provided. This stronger
result immediately implies Theorem 6.1.

In Appendix D we show that Harris’ linked-list is access-
aware, and therefore, a widely applicable reclamation scheme
must be also applicable to Harris’s linked-list implementa-
tion [19]. For completeness, Harris’s plain implementation,
including retire() calls, is presented in the supplementary ma-
terial. The main idea in the proof is to assume in a way of

Conference’17, July 2017, Washington, DC, USA

contradiction that an SMR does satisfy all three properties. In
this case, it must be applicable to Harris’ linked-list, and we
then build a specific execution that is not safe for this concur-
rent linked-list implementation. Thus, no SMR can satisfy all
three properties.

As described in Section 3, the list API provides the insert(),
delete() and contains() operations, and the nodes comprise
of two fields — an immutable key and a next pointer to the
node’s successor in the list. The list maintains two sentinel
nodes, head and tail, with the respective —oo and oo keys,
that are never removed from the list. Nodes are logically
inserted into the list by physically linking them into the list
and making them reachable, and are logically deleted from
the list by marking their next pointer (for more details, see [19,
241]). Note that after a node is marked for deletion, it is not
necessarily unlinked by the thread that had previously marked
it, as it might be unlinked during a concurrent operation.
However, the marked node is guaranteed to be unlinked and
retired before the delete() operation returns.

All three API operations use the search() auxiliary method,
which is in charge of (1) locating a given key in the list, and
(2) unlinking logically deleted (i.e., marked) nodes from the
list. This method traverses the list (by following next pointers)
until it finds the first unmarked node with a key greater than
or equal to the searched key. After locating such a node, the
method might try to physically unlink a sequence of marked
nodes from the list. The crucial point here is that marked
nodes are not unlinked during the traversal. As opposed to
Michael’s implementation [30] (that was originally desig-
nated to fit HP [32]), when the search() method encounters a
marked node, it just continues its traversal.

We prove Theorem 6.1 by constructing a specific execution.
Let N > 2 be some fixed constant, and assume N threads are
executing Harris’s linked list plain implementation, integrated
with a widely applicable memory reclamation scheme. By
Definition 5.6, the given reclamation scheme is applicable to
this plain implementation. In particular, by Definition 5.4, the
integrated implementation must provide the same progress
guarantee as Harris’s algorithm, namely lock-freedom. Now,
assume by contradiction that the scheme is both weakly robust
and easily integrated.

Initially (stage a in Figure 1), there are two reachable nodes
in the list (besides the head and tail sentinels). Assume that
T starts executing a delete(3) operation. It calls search(3),
and starts its traversal by reading head’s next pointer, which
is currently referencing node 1. At this stage, the scheduler
moves control to T,, which executes a delete(1) operation. T,
marks node 1 for deletion (stage b) and physically unlinks
it from the list (stage c). Next, T, executes an insert(3) op-
eration (stage d) and a delete(2) operation (stages e-f). In a
similar way, T, continues calling an alternating sequence of
insert(n+1) and delete(n) (starting from n = 3).

Conference’17, July 2017, Washington, DC, USA

0 = o = o e = o =
= = e = e

|head| W 2 I O—H tail I .—‘}—*nu”
(d)

|head| ‘\L@ 2 I } I 3 I } I tail I } null
(e)

EEEN| == o BN = o I B el

(f)

[

Figure 1: Lower bound illustration (n = 2).

For every n > 1, let i, be the integer such that C;, is the
configuration after T, returns from the delete(n) execution.
Note that for every n > 2, after T, executes insert(n+1), there
are four active nodes in the system (head, n, n+1 and tail), as
the rest of the nodes are already retired before their respective
delete() operations return. Finally, after T, executes delete(n),
there are three active nodes in the system (head, n+1 and tail),
and the nodes 1, .. ., n are already retired. Therefore, for every
n > 1, max_activeg (i) = 4. As the integrated reclamation
scheme is weakly robust, there exists a function fg, which is
polynomial in max_activeg, such that the number of retired
nodes in C;, is bounded by fg(i,) - N.

Letn > fg(iy) - N (n must exist as the number of threads
N and max_activeg, are constants). In C; , forevery 1 <i <
n, node i has already been retired, and as n > fg(i,) - N,
by Definition 5.2, at least one of the nodes 1, 2,...,n must
already be reclaimed. In C;,, if anode i, 1 < i < n, is already
retired but not yet reclaimed, then it must be marked and
pointing to node i + 1 via its next pointer. To see that the
latter is true, recall that, as the scheme is easily integrated,
according to Condition 5 from Definition 5.3, the reclamation
scheme does not update next pointers.

Starting from C;, let the scheduler apply a solo-run by T;.
Le., T; is the only effective thread in C;, and on (for more
details, see Section 3). T; continues its traversal from node 1.
As all nodes along its path are marked, the traversal’s stopping
condition does not hold for all nodes along its path (which
have keys smaller than n+ 1, and that have not been reclaimed
yet), and T; should continue its traversal. By Condition 4
from Definition 5.3 (forcing well-formedness), T; must return
from this read operation (as implemented by the reclamation
scheme) before it continues its execution. As T is the only
effective thread, and as lock-freedom is guaranteed (see Sec-
tion 3), every such read operation by T; indeed terminates.
In addition, according to Condition 3 from Definition 5.3, as
long as a node x (for any 1 < x < n) is not reclaimed, a read
of its next pointer by T; must return a marked reference to
the memory (either previously or currently) occupied by node
x + 1. Therefore, as long as T does not encounter a reclaimed

Gali Sheffi and Erez Petrank

node, every read of a next pointer must terminate, returning
a (marked) reference to the next node.

Recall that there exists an already reclaimed node m (for
some 1 < m < n), such that for every i < m — 1, node i’s
next pointer is marked, and is pointing to node i + 1. Even-
tually, T; must dereference a pointer stored in the memory
formerly occupied by m. It must assign the content of an
invalid next pointer (as m has already been reclaimed) to a lo-
cal pointer variable, p, performing an unsafe memory access
by Definition 4.1. By Definition 5.4, the given reclamation
scheme is safe with respect to this plain implementation, and
therefore, by Definition 4.2, T;’s local pointer p must be over-
ridden before T; dereferences it. By Condition 2 and 3 from
Definition 5.3, T; does not perform any updates before deref-
erencing p, as it contains a marked reference — a contradiction
to the scheme’s applicability to the given plain implementa-
tion. Therefore, a memory reclamation scheme cannot provide
robustness, easy integration and wide applicability. [

Discussion. We proved this result using a specific data
structure (Harris’s linked-list). This is enough to prove the im-
possibility in Theorem 6.1, but it actually provides a stronger
result. Even if one tries to achieve robustness and ease of in-
tegration only for Harris’s linked-list, then this attempt must
fail. Therefore, other weaker interpretations of applicability
that only require applicability to smaller sets of implementa-
tions must still respect the impossibility of Theorem 6.1, as
long as the notion of applicability for an SMR requires it to
be applicable to Harris’s list (among other implementations).

An interesting open question is to characterize implemen-
tations that are similar to Harris’ linked-list. Namely, that
memory reclamation with (weak) robustness and ease of in-
tegration cannot be obtained for them. It is interesting to
understand which data structures require special care.

Finally, we stress the practical importance of this theorem.
In order to apply HP to Harris’s linked-list, Maged [30] mod-
ified Harris’s implementation to disallow the simultaneous
removal of multiple consecutive nodes from the list. While
this allowed applying HP to the list, Michael’s implemen-
tation was slower than the original implementation, see for
example the evaluation in [10]. Thus, avoiding implementa-
tions that are non-trivial for memory reclamation may reduce
performance of the concurrent data structures.

7 CONCLUSION

In this paper we proposed some theoretical foundation for safe
memory reclamation for concurrent data structures. We pro-
vided definitions for safe memory reclamation and for three
fundamental desirable properties: robustness, easy integration
and wide applicability. We then proved that no reclamation
scheme can provide all three desirable properties. L.e., robust
reclamation schemes (with limited space overhead) should

The ERA Theorem for Safe Memory Reclamation

either be designed for specific implementations, or come with
a relatively complicated manual for proper integration. Open
questions include the formalization of additional interesting
properties of SMRs and formal safety proofs for existing
SMR schemes.

REFERENCES

(1]

[2

—

3

—

[4

[inar}

[5

—

[6

[t}

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

Vitaly Aksenov, Dan Alistarh, Alexandra Drozdova, and Amirkeivan
Mohtashami. 2020. The splay-list: A distribution-adaptive concurrent
skip-list. arXiv preprint arXiv:2008.01009 (2020).

Dan Alistarh, Patrick Eugster, Maurice Herlihy, Alexander Matveev,
and Nir Shavit. 2014. Stacktrack: An automated transactional approach
to concurrent memory reclamation. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems. 1—14.

Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit.
2018. Threadscan: Automatic and scalable memory reclamation. ACM
Transactions on Parallel Computing (TOPC) 4, 4 (2018), 1-18.

Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. 2018. Nesting-
safe recoverable linearizability: Modular constructions for non-volatile
memory. In Proceedings of the 2018 ACM Symposium on Principles of
Distributed Computing. 7-16.

Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi.
2016. Fast and robust memory reclamation for concurrent data struc-
tures. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures. 349-359.

Anastasia Braginsky, Alex Kogan, and Erez Petrank. 2013. Drop
the anchor: lightweight memory management for non-blocking data
structures. In Proceedings of the twenty-fifth annual ACM symposium
on Parallelism in algorithms and architectures. 33—42.

Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A general technique
for non-blocking trees. In Proceedings of the 19th ACM SIGPLAN
symposium on Principles and practice of parallel programming. 329—
342.

Trevor Alexander Brown. 2015. Reclaiming memory for lock-free data
structures: There has to be a better way. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing. 261-270.
Nachshon Cohen. 2018. Every data structure deserves lock-free mem-
ory reclamation. Proc. ACM Program. Lang. 2, OOPSLA (2018),
143:1-143:24. https://doi.org/10.1145/3276513

Nachshon Cohen and Erez Petrank. 2015. Automatic memory recla-
mation for lock-free data structures. ACM SIGPLAN Notices 50, 10
(2015), 260-279.

Nachshon Cohen and Erez Petrank. 2015. Efficient memory manage-
ment for lock-free data structures with optimistic access. In Proceedings
of the 27th ACM symposium on Parallelism in Algorithms and Architec-
tures. 254-263.

Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2021. OrcGC:
automatic lock-free memory reclamation. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 205-218.

David L Detlefs, Paul A Martin, Mark Moir, and Guy L Steele Jr. 2002.
Lock-free reference counting. Distributed Computing 15, 4 (2002),
255-271.

Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast non-intrusive
memory reclamation for highly-concurrent data structures. In Proceed-
ings of the 2016 ACM SIGPLAN International Symposium on Memory
Management. 3645.

Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking binary search trees. In Proceedings of the 29th

(16]

(17]

(18]

[19]

(20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

Conference’17, July 2017, Washington, DC, USA

ACM SIGACT-SIGOPS symposium on Principles of distributed comput-
ing. 131-140.

Keir Fraser. 2004. Practical lock-freedom. Technical Report. University
of Cambridge, Computer Laboratory.

Anders Gidenstam, Marina Papatriantafilou, Hakan Sundell, and Philip-
pas Tsigas. 2008. Efficient and reliable lock-free memory reclamation
based on reference counting. /[EEE Transactions on Parallel and Dis-
tributed Systems 20, 8 (2008), 1173-1187.

Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying
concurrent memory reclamation algorithms with grace. In European
Symposium on Programming. Springer, 249-269.

Timothy L Harris. 2001. A pragmatic implementation of non-blocking
linked-lists. In International Symposium on Distributed Computing.
Springer, 300-314.

Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir,
William N Scherer, and Nir Shavit. 2005. A lazy concurrent list-based
set algorithm. In International Conference On Principles Of Distributed
Systems. Springer, 3—16.

Maurice Herlihy. 1991. Wait-free synchronization. ACM Transactions
on Programming Languages and Systems (TOPLAS) 13, 1 (1991), 124~
149.

Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005.
Nonblocking memory management support for dynamic-sized data
structures. ACM Transactions on Computer Systems (TOCS) 23, 2
(2005), 146-196.

Maurice Herlihy and Nir Shavit. 2011. On the nature of progress.
In International Conference On Principles Of Distributed Systems.
Springer, 313-328.

Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear.
2020. The art of multiprocessor programming. Newnes.

Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A
correctness condition for concurrent objects. ACM Transactions on
Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463—
492.

Shane V Howley and Jeremy Jones. 2012. A non-blocking internal
binary search tree. In Proceedings of the twenty-fourth annual ACM
symposium on Parallelism in algorithms and architectures. 161-171.
Jeehoon Kang and Jaechwang Jung. 2020. A marriage of pointer-and
epoch-based reclamation. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation.
314-328.

Roland Meyer and Sebastian Wolff. 2019. Decoupling lock-free data
structures from memory reclamation for static analysis. Proceedings of
the ACM on Programming Languages 3, POPL (2019), 1-31.

Roland Meyer and Sebastian Wolff. 2019. Pointer life cycle types for
lock-free data structures with memory reclamation. Proceedings of the
ACM on Programming Languages 4, POPL (2019), 1-36.

Maged M Michael. 2002. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the fourteenth annual ACM
symposium on Parallel algorithms and architectures. 73-82.

Maged M Michael. 2004. ABA prevention using single-word instruc-
tions. IBM Research Division, RC23089 (W0401-136), Tech. Rep
(2004).

Maged M Michael. 2004. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Transactions on Parallel and Distributed
Systems 15, 6 (2004), 491-504.

Aravind Natarajan and Neeraj Mittal. 2014. Fast concurrent lock-
free binary search trees. In Proceedings of the 19th ACM SIGPLAN
symposium on Principles and practice of parallel programming. 317—
328.

Ruslan Nikolaev and Binoy Ravindran. 2020. Universal wait-free mem-
ory reclamation. In Proceedings of the 25th ACM SIGPLAN Symposium

https://doi.org/10.1145/3276513

Conference’17, July 2017, Washington, DC, USA

on Principles and Practice of Parallel Programming. 130-143.

[35] Ruslan Nikolaev and Binoy Ravindran. 2021. Snapshot-free, transpar-
ent, and robust memory reclamation for lock-free data structures. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 987-1002.

[36] Pedro Ramalhete and Andreia Correia. 2017. Brief announcement:
Hazard eras-non-blocking memory reclamation. In Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and Architectures.
367-369.

[37] Gali Sheffi, Maurice Herlihy, and Erez Petrank. 2021. VBR: Version
Based Reclamation. In 35th International Symposium on Distributed
Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual
Conference) (LIPIcs, Vol. 209), Seth Gilbert (Ed.). Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 35:1-35:18. https://doi.org/10.4230/
LIPIcs.DISC.2021.35

[38] Gali Sheffi, Maurice Herlihy, and Erez Petrank. 2021. Vbr: Version
based reclamation. In Proceedings of the 33rd ACM Symposium on
Parallelism in Algorithms and Architectures. 443—445.

[39] Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2021. NBR: neutral-
ization based reclamation. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 175—
190.

[40] Daniel Solomon and Adam Morrison. 2021. Efficiently reclaiming
memory in concurrent search data structures while bounding wasted
memory. In Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 191-204.

[41] Hakan Sundell. 2005. Wait-free reference counting and memory man-
agement. In /9th IEEE International Parallel and Distributed Process-
ing Symposium. IEEE, 10—pp.

[42] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank.
2012. Wait-free linked-lists. In International Conference On Principles
Of Distributed Systems. Springer, 330-344.

[43] Shahar Timnat and Erez Petrank. 2014. A practical wait-free simulation
for lock-free data structures. ACM SIGPLAN Notices 49, 8 (2014),
357-368.

[44] Yuanhao Wei, Naama Ben-David, Guy E Blelloch, Panagiota Fatourou,
Eric Ruppert, and Yihan Sun. 2021. Constant-time snapshots with
applications to concurrent data structures. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 31-46.

[45] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and
Michael L Scott. 2018. Interval-based memory reclamation. ACM
SIGPLAN Notices 53, 1 (2018), 1-13.

A EBRIS STRONGLY APPLICABLE

In this section we prove that the seminal EBR reclamation
scheme [8, 16, 19] is strongly applicable. According to Defi-
nition 5.4 and 5.5, this means that, given any plain implemen-
tation: (1) EBR is a safe memory reclamation with respect to
that implementation, (2) integrating EBR maintains lineariz-
ability, and (3) integrating EBR maintains the same progress
guarantee, provided by the plain implementation.

In EBR, the execution is divided into epochs. The execut-
ing threads maintain a shared epoch counter and a shared an-
nouncements array. Upon each invocation of a data-structure
operation, the begin_op() operation is called. During the be-
gin_op() operation, the executing thread reads the current

Gali Sheffi and Erez Petrank

global epoch and announces it in the shared announcements ar-
ray. Then, it checks whether all other threads have announced
the current epoch (or a quiescent state). If they have, it in-
crements the shared epoch counter. Before a data-structure
operation returns, the end_op() operation is called, for an-
nouncing a quiescent state in the global announcements array.

In addition to the global epoch counter and announcements
array, each thread maintains three local retire lists, containing
the nodes retired during the last three epochs, respectively
(EBR’s retire() operation only inserts the retired node into
the current epoch’s retire list). Once the global epoch counter
shows epoch e, the retire list for epoch e — 2 can be reclaimed.

Now, assume a plain data-structure implementation. We
are going to show that EBR is applicable to the given im-
plementation. According to Definition 5.4, we need to show
that (1) EBR is safe with respect to the given implementation,
(2) the integrated implementation is linearizable, and (3) the
integrated implementation provide the plain implementation’s
progress guarantee.

First, we are going to prove that every memory access, dur-
ing any integrated execution, is safe by Definition 4.1. Recall
that according to Section 4, the plain implementation already
contains retire() calls. It is guaranteed that each node is retired
at most once, and that nodes are no longer reachable after
being retired. Let E = Cy, sy, ... be an integrated execution,
and assume by contradiction that s,, is an unsafe memory ac-
cess by a thread T. W.l.o.g., assume that s, is the first unsafe
memory access during E. By Definition 4.1, T dereferences
an invalid pointer, p, at s,,,. Let s; be the last assignment into
p before s, and let n be the node referenced by p at C;. As p
is invalid at s,,, and by the choice of m, n was reclaimed at
some point between s; and s,,.

Let e be n’s retire epoch. The global epoch at s,,, must be
at least e + 2 (as n is already reclaimed). This means that
T must have announced an epoch which is at least e + 1,
upon the invocation of the current operation. As T started
its operation during an epoch which is at least e + 1, n has
not been reachable (and obviously, not local to T) at any
point during the operation execution. By our assumptions in
Section 3, T cannot have access to n’s previously occupied
memory address. In particular, its local pointer, p, could not
have referenced this address — a contradiction. Therefore,
every memory access, during any integrated execution, is safe
by Definition 4.1. By Definition 4.2, EBR is safe with respect
to every plain implementation.

Given that EBR is safe with respect to any given plain im-
plementation, the history of every EBR-integrated execution
is equivalent to some history of an execution of the plain
implementation. By the definition of linearizability, every
EBR-integrated implementation maintains the linearizability
of the respective plain implementation. Finally, EBR main-
tains any progress guarantee, as its three operations all consist

https://doi.org/10.4230/LIPIcs.DISC.2021.35
https://doi.org/10.4230/LIPIcs.DISC.2021.35

The ERA Theorem for Safe Memory Reclamation

of a finite number of steps. As EBR is applicable to every
plain implementation by Definition 5.4, it is strongly applica-
ble by Definition 5.5.

B HARRIS’S LINKED-LIST

Harris’s plain implementation, including retire() calls (see
lines 34 and 52), is presented in Algorithm 1. As described
in Section 3, the list API provides the contains (lines 23-26),
insert (lines 27-38) and delete (lines 39-53) operations, and
the nodes comprise of two fields — an immutable key and a
next pointer to the node’s successor in the list.

The list maintains two sentinel nodes, head and tail, with
the respective —oco and co keys, that are never removed from
the list. Nodes are logically inserted into the list by physically
linking them into the list and making them reachable (see
line 37). Nodes are logically deleted from the list by marking
their next pointer (for more details, see [19, 24]). Note that
after a node is marked for deletion in line 48, it is not neces-
sarily unlinked by the thread that had previously marked it, as
it might be unlinked during a concurrent operation. However,
the marked node is guaranteed to be unlinked and retired (in
line 52) before the operation returns in line 53.

Besides the provided API operations, the implementation
uses the search() auxiliary method (lines 1-22), which is in
charge of (1) locating a given key in the list (the respective
node and its predecessor are returned in line 17 or 22), and
(2) unlinking logically deleted nodes from the list (in line 18).
Marked nodes are not necessarily unlinked during the traver-
sal. The search() method tries to unlink a series of marked
nodes (line 18) only if at least one of the output candidates
is marked. In such case, it is guaranteed that the condition in
line 14 does not hold.

C ACCESS-AWARE DATA-STRUCTURE
IMPLEMENTATIONS

In this section we formalize the definition of access-aware
data-structure implementations. This definition relates to the
class of implementations, originally defined in [39].

As briefly discussed in Section 5.3, such implementations
can be divided into separate read-only and write phases (the
latter type may also include reads). Besides these two phase
types, each write phase is preceded by a conceptual reserva-
tions phase. The reservation phase should be added during
the reclamation scheme integration into the code, and is in-
tended for protecting potential hazardous accesses during the
write phase. Since the reservations phase is not reflected in
the given plain implementation (and since some reclamation
schemes do not employ protection at all [16, 19, 37]), we
chose to avoid it in our definition. The separation into phases
itself is enough for inserting reservation commands before
write phases.

Conference’17, July 2017, Washington, DC, USA

The original definition roughly states two conditions for
classifying proper read-only and write phases:

(1) During a read-only phase, shared nodes can be read
only if pointers to them were obtained during the cur-
rent phase.

(2) During a write phase, shared nodes can be accessed
(either for reads or for writes) only if they were reserved
prior to the current phase.

For formalizing the above two conditions, the notion of
obtaining pointers in condition 1 should be properly phrased,
and an alternative condition for the reservation in condition 2
should also be provided.

For the latter condition, it suffices to demand that all shared
memory accesses during a write phase, do not dereference
newly updated pointers. As long as all dereferenced pointers
(either for reads or for writes) are already obtained during the
last read-only phase, any integrated reclamation scheme can
add the desired reservations phase between the two phases.

The notion of obtaining a pointer can be treated in a similar
way to our treatment of safe memory access in Section 4.2.
Given an execution E = Cy - s - ..., a pointer variable p, and
any configuration C,, in the execution (m > 1), let s; be the
last update of p in the sub-execution Cy - s; - ... C,,. Namely,
fori < m, p is updated in s;, and for every i < j < m, s; does
not update p. The update of p in s; may be an allocation of a
new node to p, a pointer assignment from a global variable
(according to Section 3, it must be a data-structure entry
point), or a dereference of a pointer g (e.g., when reading the
next pointer of a data-structure node).

Given j < m, we say that p is j-permitted at Cp,, if one of
the following holds:

(1) s; is an allocation, and at C,,, the respective allocated

node is still local to the allocating thread.

(2) s; is a pointer assignment from a global variable, and

j<i

(3) s; is a dereference of a pointer g, j < i, and q is j-

permitted at C;_;.

We are now going to define the class of access-aware data-
structure implementations, as follows: a plain implementation
is considered as access-aware, if it can be divided into separate
alternating read-only and write phases, such that for every
derived execution E = Cy, s1, . . . and a step s, it holds that:

(1) If s, is a shared-memory read into a local pointer, p,
during a read-only segment that started in C; (for some
Jj < m), then p is j-permitted at C,,.

(2) If s, is a shared-memory read into a local pointer, p,
during a write segment that started in C; (for some
Jj < m), then s,, is either an allocation of a new node,
aread of a global variable, or a dereference of another
pointer variable, g, that was t-permitted at C; (given
that the last read-only segment began at C;).

Conference’17, July 2017, Washington, DC, USA

Gali Sheffi and Erez Petrank

Algorithm 1 Based on Harris’s Non-Blocking Linked-List Implementation

1: private Window *search(key)
2 retry: while (true) do
3: Node *pred = head
4: Node *pred_next = head — next
5 Node *curr = pred_next
6 Node *curr_next = curr — next
7 while (isMarked(curr_next) Il
key < curr — key) do
if (lisMarked(curr_next))

9: pred = curr
10: pred_next = curr_next
11: curr = getRef(curr_next)
12: if (curr == tail) break
13: curr_next = curr — next
14: if (pred_next == curr)
15: if (isMarked(curr — next))
16: goto retry
17: else return new Window(curr, pred)
18: if (CAS(&pred — next, pred_next, curr))
19: Node *tmp = pred_next
20: Node *tmp_next = tmp — next
21: if (isMarked(curr — next)) goto retry
22: else return new Window(curr, pred)

23: public boolean contains(key)

24: Window *window = search(key)
25: Node *curr = window — curr
26: return !isMarked(curr — next) A curr — key == key

27: public boolean insert(key)

28: Node *new_node = alloc(key)
29: while (true) do

30: Window *window = search(key)

31: Node *pred = window — pred

32: Node *curr = window — curr

33: if (curr — key == key)

34: retire(new_node)

35: return false

36: new_node — next = curr

37: if (CAS(&pred — next, curr, new_node))
38: return true

39: public boolean delete(key)
40: while (true) do

41: Window *window = search(key)
42: Node *pred = window — pred

43: Node *curr = window — curr

44: if (curr — key # key)

45: return false

46: Node *succ = getRef(curr — next)
47: Node *marked = getMarked(succ)
438: if (\CAS(&curr — next, succ, marked))
49: continue

50: if (!CAS(&pred — next, curr, succ))
51: search(key)

52: retire(curr)

53: return true

(3) If s, is a shared-memory write, dereferencing a pointer
p, then the current phase is a write phase. and p was
t-permitted when the last read-only phase ended (given
that the last read-only segment began at C;).

Note that retirements of nodes are not considered as shared
memory reads or writes. This definition does not relate to
retirement at all.

D HARRIS’S LINKED-LIST IS AN
ACCESS-AWARE IMPLEMENTATION

In this section we are going to prove that Harris’s linked-
list implementation [19] (as presented in Appendix B) is an
access-aware data-structure implementation. This has already
been shown in [39]. However, for the completeness of our
main theorem proof (see Section 6), we also show it for our
definition (from Appendix C).

We are first going to divide the code into separate read-only
and write phases, as follows:

Searches. The first read-only phase starts in line 2. If the
method returns in line 17, then a new write phase begins.
If the method does not return in line 17, just before line 18

is executed, a new write phase begins, and if the condition
in line 21 holds, the write phase ends and a new read-only
phase begins. Note that in any case, the search method always
returns during a write phase. This means that both pred and
curr can be assumed to be reserved at this point.

Contains. After returning from the search call in line 24,
lines 25-26 are executed during a write phase.

Inserts. The operation starts accessing shared memory when
the search auxiliary method is called in line 30. After it re-
turns, the rest of the loop iteration is executed in a write
phase.

Deletes. The operation starts accessing shared memory
when the search auxiliary method is called in line 41. After
it returns, the rest of the loop iteration is executed in a write
phase, unless the search method is called again in line 51.
Then, a new read-only phase is initiated, an so on.

It remains to show that the above separation into phases
indeed adheres to the terms defined in Appendix C. As every
read-only phase starts with reading the head global variable
in line 3 and dereferencing permitted pointers (can be proven

The ERA Theorem for Safe Memory Reclamation

by induction), the read-only terms always hold. In addition,
the pred and curr pointers, accessed during the executions
of all three operations, are permitted in the last respective
read-only-phase. As the new node, allocated in line 28, is
not shared before the execution of line 37, accessing it is
also permitted. Finally, as mentioned in Appendix C, the
retirement in line 52 is also permitted. Therefore, Harris’s
linked-list implementation [19] (as presented in Appendix B)
is an access-aware data-structure implementation.

E INCOMPATIBILITY TO HARRIS’S
LINKED-LIST

Many popular reclamation schemes (e.g., HP [32], HE [36],
and IBR [45]) are known [27, 39] to not be applicable to the
plain implementation, presented in Algorithm 1 (and by the
proof from Appendix D, are not widely applicable). Specifi-
cally, HP, IBR, and HE, provide safety via pointers protection.
Le., dereferencing is executed in the following manner: the
thread first reads the pointer’s content, then publishes some
data (this data differs between the schemes), and then reads
its content again. If the content has not changed between the
reads, it is guaranteed that the referenced node is protected,
and the thread may safely access it. Relying on pointers pro-
tection is problematic, since a stable pointer value (i.e., the
same value is read twice) does not necessarily guarantee safe
access to the referenced node.

(a)
ol {wl et {w[eF{aoFm

(b)

I O I O I 7 = I = e R

(e}

I N N < i e O e I e R

(d)

[[0 I T =

Figure 2: An example for HP’s [32], HE’s [36], and
IBR’s [45] limited applicability, using the linked-list im-
plementation from Algorithm 1.

Consider the scenario depicted in Figure 2 (the scenario
depicted in Figure 1 can also serve as an example). Initially
(stage a), the list contains two nodes (15 and 76). At this stage,
T; invokes insert(58), calls the search() auxiliary method in
line 30, starts traversing the list, obtains a local pointer to node
15, protects it, and is then halted by the scheduler. During
stage b, some other thread successfully inserts node 43 into
the list’. During stage c, T, invokes delete(43) and T; invokes

TInserting node 43 after node 15 is protected by Tj is crucial for deriving
a contradiction to HE’s and IBR’s safety. For HP, it can also work if the
protection is executed after node 43 is inserted.

Conference’17, July 2017, Washington, DC, USA

delete(15). After both threads find the respective removal win-
dow in line 41, both of them successfully mark their victim
node in line 48. At this point, T, invokes delete(44). During
its traversal, it physically unlinks nodes 15 and 43 (by setting
head’s next reference to point to node 76). Nodes 15 and
43 are eventually retired by T3 and T; (respectively), before
returning from their delete() executions (line 52). T3 cannot
reclaim node 15, as it is protected by T3, but T; successfully
reclaims node 43, as it is not protected by any thread. Even-
tually, T, returns in line 45, as there does not exist any node
with a 44 key. After T, terminates, T; continues its execution,
reads node 15’s next pointer, protects node 43’s address and
re-reads node 15’s next pointer. After making sure node 15’s
next pointer is stable, T; dereferences its pointer to node 43’
address (pre-reclamation), which is already reclaimed. This
scenario obviously foils safety, as node 43’s memory is either
returned to the OS or contains another node at this stage. Note
that even if the memory, previously occupied by node 43, is
not returned to the OS, this access foils safety. HP, HE and
IBR do not employ a mechanism for dealing with stale values,
as depicted in Definition 4.2.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Defining Safe Memory Reclamation
	4.1 Nodes' Life-Cycles
	4.2 Safe and Unsafe Memory Accesses
	4.3 Defining SMR in the Presence of Unsafe Memory Accesses

	5 Desirable SMR Properties
	5.1 Robustness (Memory Footprint)
	5.2 Easy Integration
	5.3 Wide Applicability

	6 The ERA Theorem
	7 Conclusion
	References
	A EBR is Strongly Applicable
	B Harris's Linked-List
	C Access-Aware Data-Structure Implementations
	D Harris's Linked-List is an Access-Aware implementation
	E Incompatibility to Harris's Linked-List

