skip to main content
10.1145/3583780.3614939acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

IUI: Intent-Enhanced User Interest Modeling for Click-Through Rate Prediction

Published: 21 October 2023 Publication History

Abstract

Click-Through Rate (CTR) prediction is becoming increasingly vital in many industrial applications, such as recommendations and online advertising. How to precisely capture users' dynamic and evolving interests from previous interactions (e.g., clicks, purchases, etc.) is a challenging task in CTR prediction. Mainstream approaches focus on disentangling user interests in a heuristic way or modeling user interests into a static representation. However, these approaches overlook the importance of users' current intent and the complex interactions between their current intent and global interests. To address these concerns, in this paper, we propose a novel intent-enhanced user interest modeling for click-through rate prediction in large-scale e-commerce recommendations, abbreviated as IUI. Methodologically, different from existing works, we consider users' recent interactions to be inspired by their implicit intent and then leverage an intent-aware network to model their current local interests in a more precise and fine-grained manner. In addition, to obtain a more stable co-dependent global and local interest representation, we employ a co-attention network capable of activating the corresponding interest in global-level interactions and capturing the dynamic interactions between global- and local-level interaction behaviors. Finally, we incorporate self-supervised learning into the model training by maximizing the mutual information between the global and local representations obtained via the above two networks to enhance the CTR prediction performance. Compared with existing methods, IUI benefits from the different granularity of user interest to generate a more accurate and comprehensive preference representation. Experimental results demonstrate that the proposed model outperforms previous state-of-the-art methods in various metrics on three real-world datasets. In addition, an online A/B test deployed on the JD recommendation platforms shows a promising improvement across multiple evaluation metrics.

References

[1]
Icek Ajzen. 2002. Residual effects of past on later behavior: Habituation and reasoned action perspectives. Personality and social psychology review, Vol. 6, 2 (2002), 107--122.
[2]
Dolores Albarracin and Robert S Wyer Jr. 2000. The cognitive impact of past behavior: influences on beliefs, attitudes, and future behavioral decisions. Journal of personality and social psychology, Vol. 79, 1 (2000), 5.
[3]
Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng Jin, and Yong Li. 2021. Sequential recommendation with graph neural networks. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 378--387.
[4]
Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. 2019. Behavior sequence transformer for e-commerce recommendation in alibaba. In Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. 1--4.
[5]
Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. 2016. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems. 7--10.
[6]
Zhifang Fan, Dan Ou, Yulong Gu, Bairan Fu, Xiang Li, Wentian Bao, Xin-Yu Dai, Xiaoyi Zeng, Tao Zhuang, and Qingwen Liu. 2022. Modeling Users' Contextualized Page-wise Feedback for Click-Through Rate Prediction in E-commerce Search. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. 262--270.
[7]
Yufei Feng, Fuyu Lv, Weichen Shen, Menghan Wang, Fei Sun, Yu Zhu, and Keping Yang. 2019. Deep session interest network for click-through rate prediction. arXiv preprint arXiv:1905.06482 (2019).
[8]
Kun Gai, Xiaoqiang Zhu, Han Li, Kai Liu, and Zhe Wang. 2017. Learning piece-wise linear models from large scale data for ad click prediction. arXiv preprint arXiv:1704.05194 (2017).
[9]
Suyu Ge, Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. 2020. Graph enhanced representation learning for news recommendation. In Proceedings of The Web Conference 2020. 2863--2869.
[10]
Thore Graepel, Joaquin Quinonero Candela, Thomas Borchert, and Ralf Herbrich. 2010. Web-scale bayesian click-through rate prediction for sponsored search advertising in microsoft's bing search engine. Omnipress.
[11]
Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, Lixin Zou, Yiding Liu, and Dawei Yin. 2020. Deep multifaceted transformers for multi-objective ranking in large-scale e-commerce recommender systems. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2493--2500.
[12]
Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017).
[13]
Li He, Hongxu Chen, Dingxian Wang, Shoaib Jameel, Philip Yu, and Guandong Xu. 2021. Click-Through Rate Prediction with Multi-Modal Hypergraphs. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 690--699.
[14]
Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In proceedings of the 25th international conference on world wide web. 507--517.
[15]
Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware factorization machines for CTR prediction. In Proceedings of the 10th ACM conference on recommender systems. 43--50.
[16]
Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation. In 2018 IEEE international conference on data mining (ICDM). IEEE, 197--206.
[17]
Jiacheng Li, Yujie Wang, and Julian McAuley. 2020a. Time interval aware self-attention for sequential recommendation. In Proceedings of the 13th international conference on web search and data mining. 322--330.
[18]
Shihao Li, Dekun Yang, and Bufeng Zhang. 2020b. MRIF: Multi-resolution interest fusion for recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 1765--1768.
[19]
Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. 2019. Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 539--548.
[20]
Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and Yuzhou Zhang. 2019. Feature generation by convolutional neural network for click-through rate prediction. In The World Wide Web Conference. 1119--1129.
[21]
Feng Liu, Wei Guo, Huifeng Guo, Ruiming Tang, Yunming Ye, and Xiuqiang He. 2020. Dual-attentional factorization-machines based neural network for user response prediction. In Companion Proceedings of the Web Conference 2020. 26--27.
[22]
Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: short-term attention/memory priority model for session-based recommendation. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 1831--1839.
[23]
Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu. 2020. Disentangled self-supervision in sequential recommenders. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 483--491.
[24]
Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian, Da Luo, Kangyi Lin, Junzhou Huang, Sophia Ananiadou, and Peilin Zhao. 2022. Neighbour Interaction based Click-Through Rate Prediction via Graph-masked Transformer. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 353--362.
[25]
Qi Pi, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, Xiaoqiang Zhu, and Kun Gai. 2020. Search-based user interest modeling with lifelong sequential behavior data for click-through rate prediction. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2685--2692.
[26]
Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference on data mining. IEEE, 995--1000.
[27]
Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factorizing personalized markov chains for next-basket recommendation. In Proceedings of the 19th international conference on World wide web. 811--820.
[28]
Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting clicks: estimating the click-through rate for new ads. In Proceedings of the 16th international conference on World Wide Web. 521--530.
[29]
Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016. Deep crossing: Web-scale modeling without manually crafted combinatorial features. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 255--262.
[30]
Qijie Shen, Hong Wen, Wanjie Tao, Jing Zhang, Fuyu Lv, Zulong Chen, and Zhao Li. 2022a. Deep Interest Highlight Network for Click-Through Rate Prediction in Trigger-Induced Recommendation. In Proceedings of the ACM Web Conference 2022. 422--430.
[31]
Qijie Shen, Hong Wen, Jing Zhang, and Qi Rao. 2022b. Hierarchically Fusing Long and Short-Term User Interests for Click-Through Rate Prediction in Product Search. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 1767--1776.
[32]
Si Shen, Botao Hu, Weizhu Chen, and Qiang Yang. 2012. Personalized click model through collaborative filtering. In Proceedings of the fifth ACM international conference on Web search and data mining. 323--332.
[33]
Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. 2019. BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM international conference on information and knowledge management. 1441--1450.
[34]
Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation via convolutional sequence embedding. In Proceedings of the eleventh ACM international conference on web search and data mining. 565--573.
[35]
Fangye Wang, Yingxu Wang, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, and Ning Gu. 2022. CL4CTR: A Contrastive Learning Framework for CTR Prediction. arXiv preprint arXiv:2212.00522 (2022).
[36]
Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. 2021. A survey on neural recommendation: From collaborative filtering to content and context enriched recommendation. arXiv preprint arXiv:2104.13030 (2021).
[37]
Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019. Session-based recommendation with graph neural networks. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 346--353.
[38]
Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. 2017. Attentional factorization machines: Learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617 (2017).
[39]
Haochao Ying, Fuzhen Zhuang, Fuzheng Zhang, Yanchi Liu, Guandong Xu, Xing Xie, Hui Xiong, and Jian Wu. 2018. Sequential recommender system based on hierarchical attention network. In IJCAI International Joint Conference on Artificial Intelligence.
[40]
Kai Zhang, Hao Qian, Qing Cui, Qi Liu, Longfei Li, Jun Zhou, Jianhui Ma, and Enhong Chen. 2021. Multi-interactive attention network for fine-grained feature learning in ctr prediction. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 984--992.
[41]
Yu Zheng, Chen Gao, Jianxin Chang, Yanan Niu, Yang Song, Depeng Jin, and Yong Li. 2022a. Disentangling Long and Short-Term Interests for Recommendation. In Proceedings of the ACM Web Conference 2022. 2256--2267.
[42]
Zuowu Zheng, Changwang Zhang, Xiaofeng Gao, and Guihai Chen. 2022b. HIEN: Hierarchical Intention Embedding Network for Click-Through Rate Prediction. arXiv preprint arXiv:2206.00510 (2022).
[43]
Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate prediction. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 5941--5948.
[44]
Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 1059--1068.

Cited By

View all
  • (2024)HetFS: a method for fast similarity search with ad-hoc meta-paths on heterogeneous information networksWorld Wide Web10.1007/s11280-024-01303-127:6Online publication date: 18-Sep-2024
  • (2024)Session Target Pair: User Intent Perceiving Networks for Session-Based RecommendationMachine Learning and Knowledge Discovery in Databases. Research Track10.1007/978-3-031-70341-6_16(264-278)Online publication date: 22-Aug-2024

Index Terms

  1. IUI: Intent-Enhanced User Interest Modeling for Click-Through Rate Prediction

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      CIKM '23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management
      October 2023
      5508 pages
      ISBN:9798400701245
      DOI:10.1145/3583780
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 21 October 2023

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. click-through rate prediction
      2. recommender systems
      3. user behavior modeling

      Qualifiers

      • Research-article

      Conference

      CIKM '23
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

      Upcoming Conference

      CIKM '25

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)141
      • Downloads (Last 6 weeks)6
      Reflects downloads up to 17 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)HetFS: a method for fast similarity search with ad-hoc meta-paths on heterogeneous information networksWorld Wide Web10.1007/s11280-024-01303-127:6Online publication date: 18-Sep-2024
      • (2024)Session Target Pair: User Intent Perceiving Networks for Session-Based RecommendationMachine Learning and Knowledge Discovery in Databases. Research Track10.1007/978-3-031-70341-6_16(264-278)Online publication date: 22-Aug-2024

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media