skip to main content
10.1145/3583780.3615212acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
short-paper

DAE: Distribution-Aware Embedding for Numerical Features in Click-Through Rate Prediction

Published:21 October 2023Publication History

ABSTRACT

Numerical features are an important type of input for CTR prediction models. Recently, several discretization and numerical transformation methods have been proposed to deal with numerical features. However, existing approaches do not fully consider compatibility with different distributions. Here, we propose a novel numerical feature embedding framework, called Distribution-Aware Embedding (DAE), which is applicable to various numerical feature distributions. First, DAE efficiently approximates the cumulative distribution function by estimating the expectation of the order statistics. Then, the distribution information is applied to the embedding layer by nonlinear interpolation. Finally, to capture both local and global information, we aggregate the embeddings at multiple scales to obtain the final representation. Empirical results validate the effectiveness of DAE compared to the baselines, while demonstrating the adaptability to different CTR models and distributions.

References

  1. Xiao Bai, Reza Abasi, Bora Edizel, and Amin Mantrach. 2019. Position-aware deep character-level CTR prediction for sponsored search. IEEE Transactions on Knowledge and Data Engineering, Vol. 33, 4 (2019), 1722--1736.Google ScholarGoogle ScholarCross RefCross Ref
  2. Junxuan Chen, Baigui Sun, Hao Li, Hongtao Lu, and Xian-Sheng Hua. 2016. Deep ctr prediction in display advertising. In Proceedings of the 24th ACM international conference on Multimedia. 811--820.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. 2016. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems. 7--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM conference on recommender systems. 191--198.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Yufei Feng, Fuyu Lv, Weichen Shen, Menghan Wang, Fei Sun, Yu Zhu, and Keping Yang. 2019. Deep session interest network for click-through rate prediction. arXiv preprint arXiv:1905.06482 (2019).Google ScholarGoogle Scholar
  6. Daya Guo, Jiangshui Hong, Binli Luo, Qirui Yan, and Zhangming Niu. 2019. Multi-modal representation learning for short video understanding and recommendation. In 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 687--690.Google ScholarGoogle ScholarCross RefCross Ref
  7. Huifeng Guo, Bo Chen, Ruiming Tang, Weinan Zhang, Zhenguo Li, and Xiuqiang He. 2021a. An embedding learning framework for numerical features in ctr prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2910--2918.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017).Google ScholarGoogle Scholar
  9. Mingming Guo, Nian Yan, Xiquan Cui, Simon Hughes, and Khalifeh Al Jadda. 2021b. Online Product Feature Recommendations with Interpretable Machine Learning. arXiv preprint arXiv:2105.00867 (2021).Google ScholarGoogle Scholar
  10. Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019. FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction. In Proceedings of the 13th ACM Conference on Recommender Systems. 169--177.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Guolin Ke, Zhenhui Xu, Jia Zhang, Jiang Bian, and Tie-Yan Liu. 2019. DeepGBM: A deep learning framework distilled by GBDT for online prediction tasks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 384--394.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Sang Gyu Kwak and Jong Hae Kim. 2017. Central limit theorem: the cornerstone of modern statistics. Korean journal of anesthesiology , Vol. 70, 2 (2017), 144--156.Google ScholarGoogle Scholar
  13. Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. 2019. Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 539--548.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1754--1763.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model for personalization and recommendation systems. arXiv preprint arXiv:1906.00091 (2019).Google ScholarGoogle Scholar
  16. Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo, Yong Yu, and Xiuqiang He. 2018. Product-based neural networks for user response prediction over multi-field categorical data. ACM Transactions on Information Systems (TOIS), Vol. 37, 1 (2018), 1--35.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Qijie Shen, Wanjie Tao, Jing Zhang, Hong Wen, Zulong Chen, and Quan Lu. 2021. SAR-Net: A Scenario-Aware Ranking Network for Personalized Fair Recommendation in Hundreds of Travel Scenarios. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 4094--4103.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 1161--1170.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Qianqian Wang, Fang'ai Liu, Shuning Xing, and Xiaohui Zhao. 2018. A new approach for advertising CTR prediction based on deep neural network via attention mechanism. Computational and mathematical methods in medicine , Vol. 2018 (2018).Google ScholarGoogle Scholar
  20. Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network for ad click predictions. In Proceedings of the ADKDD'17. 1--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ling Yan, Wu-Jun Li, Gui-Rong Xue, and Dingyi Han. 2014. Coupled group lasso for web-scale ctr prediction in display advertising. In International Conference on Machine Learning. PMLR, 802--810.Google ScholarGoogle Scholar
  22. Xiao Yang, Tao Deng, Weihan Tan, Xutian Tao, Junwei Zhang, Shouke Qin, and Zongyao Ding. 2019. Learning compositional, visual and relational representations for CTR prediction in sponsored search. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2851--2859.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate prediction. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 5941--5948.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1059--1068.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. DAE: Distribution-Aware Embedding for Numerical Features in Click-Through Rate Prediction

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CIKM '23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management
      October 2023
      5508 pages
      ISBN:9798400701245
      DOI:10.1145/3583780

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 October 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • short-paper

      Acceptance Rates

      Overall Acceptance Rate1,861of8,427submissions,22%

      Upcoming Conference

    • Article Metrics

      • Downloads (Last 12 months)89
      • Downloads (Last 6 weeks)9

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader