skip to main content
10.1145/3584376.3584446acmotherconferencesArticle/Chapter ViewAbstractPublication PagesricaiConference Proceedingsconference-collections
research-article

Robust Trajectory Tracking Control for a Quadrotor UAV with Input Constraints

Authors Info & Claims
Published:19 April 2023Publication History

ABSTRACT

This paper mainly investigates the robust problem of sliding mode trajectory tracking control of a quadrotor unmanned aerial vehicle (UAV) with input constraints. A sliding mode control approach that considers input constraints is developed to address it. To deal with the control input constraints, an auxiliary system is presented to compensate the control inputs via using its state variables. Simultaneously, the trajectory tracking errors that include the state variables of auxiliary system are defined. Then, according to Lyapunov stability theory and sliding mode control theory, suitable sliding mode surfaces are constructed and corresponding controllers are designed such that the system is asymptotically stable. Finally, the simulation results are given to confirm the availability of the developed sliding mode control approach.

References

  1. M. Shirzadeh, A. Amirkhani, N. Tork, and H. Taghavifar, 2021. Trajectory tracking of a quadrotor using a robust adaptive type-2 fuzzy neural controller optimized by cuckoo algorithm. ISA Trans. 114 (August 2021), 171-190. https://doi.org/10.1016/j.isatra.2020.12.047 Google ScholarGoogle Scholar
  2. M. Bisheban and T. Lee. 2021. Geometric adaptive control with neural networks for a quadrotor in wind fields. IEEE Trans. Control Syst. Technol. 29, 4 (July 2021),1533-1548. https://doi.org/10.1109/TCST.2020.3006184 Google ScholarGoogle ScholarCross RefCross Ref
  3. R. Miranda-Colorado and L. T. Aguilar. 2020. Robust PID control of quadrotors with power reduction analysis. ISA Trans. 98 (March 2020), 47-62. https://doi.org/10.1016/j.isatra.2019.08.045Google ScholarGoogle Scholar
  4. G. Xu, Y. Q. Xia, D. H. Zhai, and B. Cui. 2021. Adaptive sliding mode disturbance observer–based funnel trajectory tracking control of quadrotor with external disturbances. IET Control Theory A. 15, 13 (June 2021), 1778-1788. https://doi.org/10.1049/cth2.12159Google ScholarGoogle ScholarCross RefCross Ref
  5. M. R. Cohen, K. Abdulrahim, and J. R. Forbes. 2020. Finite-horizon LQR control of quadrotors on SE2(3). IEEE Robot Autom. Lett. 5, 4 (October 2020), 5748-5755. https://doi.org/10.1109/LRA.2020.3010214Google ScholarGoogle ScholarCross RefCross Ref
  6. L. Sun, Y. T. Huang, Z. W. Zheng, B. Zhu, and J. J. Jiang. 2020. Adaptive nonlinear relative motion control of quadrotors in autonomous shipboard landings. J . Frankl. Inst. 357, 18 (December 2020), 13569-13592. https://doi.org/10.1016/j.jfranklin.2020.10.014Google ScholarGoogle ScholarCross RefCross Ref
  7. F. Y. Chen, R. Q. Jiang, K. K. Zhang, B. Jiang, and G. Tao. 2016. Robust backstepping sliding mode control and observer-based fault estimation for a quadrotor UAV. IEEE Transactions on Industrial Electronics. 63, 8 (August 2016), 5044-5056. https://doi.org/10.1109/TIE.2016.2552151Google ScholarGoogle Scholar
  8. X. Y. Shi, Y. H. Cheng, C. Yin, S. Dadras , and X. G. Huang. 2019. Design of fractional-order backstepping sliding mode control for quadrotor UAV. Asian J. Control. 21, 1 (January 2019), 156-171. https://doi.org/10.1002/asjc.1946Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. E. H. Zheng, J. J. Xiong, and J. L. Luo. 2014. Second order sliding mode control for a quadrotor UAV. ISA Transactions. 53, 4 (July 2014), 1350-1356. https://doi.org/10.1016/j.isatra.2014.03.010Google ScholarGoogle ScholarCross RefCross Ref
  10. B. Wang, Y. Y. Shen, and Y. M. Zhang. 2020. Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties. Aerosp. Sci. Technol. 99 (April 2020), 105745. https://doi.org/10.1016/j.ast.2020.105745Google ScholarGoogle Scholar
  11. M. Labbadi and M. Cherkaoui. 2020. Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances. ISA Trans. 99 (April 2020), 290-304. https://doi.org/10.1016/j.isatra.2019.10.012Google ScholarGoogle Scholar
  12. Mao, C. K. Ahn, and Z. R. Xiang. 2020. Global stabilization for a class of switched nonlinear timedelay systems via sampled-data output feedback control. IEEE Trans. Syst., Man, Cybern., Syst. https://doi.org/10.1109/TSMC.2020.3048064.Google ScholarGoogle Scholar
  13. M. Chen, S. S. Ge, and B. Ren. 2011. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica. 47 (March 2011), 452-465. https://doi.org/10.1016/j.automatica.2011.01.025Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. K. Liu, R. J. Wang, X. D. Wang, and X. X. Wang. 2021. Anti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbances. Aerosp. Sci. Technol. 115 (August 2021), 106790. https://doi.org/10.1016/j.ast.2021.106790Google ScholarGoogle Scholar
  15. L. Lu and B. Yao. 2014. Online constrained optimization based adaptive robust control of a class of MIMO nonlinear systems with matched uncertainties and input/state constraints. Automatica. 50, 3 (March 2014), 864-873. https://doi.org/10.1016/j.automatica.2013.12.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Bustan, N. Pariz, and S. K. H. Sani. 2014. Robust fault-tolerant tracking control design for spacecraft under control input saturation. ISA Transactions. 53, 4 (July 2014), 1073-1080. https://doi.org/10.1016/j.isatra.2014.03.006%3c/bib>Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    RICAI '22: Proceedings of the 2022 4th International Conference on Robotics, Intelligent Control and Artificial Intelligence
    December 2022
    1396 pages
    ISBN:9781450398343
    DOI:10.1145/3584376

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 19 April 2023

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate140of294submissions,48%
  • Article Metrics

    • Downloads (Last 12 months)30
    • Downloads (Last 6 weeks)2

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format