skip to main content
10.1145/3584954.3584965acmotherconferencesArticle/Chapter ViewAbstractPublication PagesniceConference Proceedingsconference-collections
research-article

Shunting Inhibition as a Neural-Inspired Mechanism for Multiplication in Neuromorphic Architectures

Authors Info & Claims
Published:12 April 2023Publication History

ABSTRACT

Shunting inhibition is a potential mechanism by which biological systems multiply two time-varying signals, most recently proposed in single neurons of the fly visual system. Our work demonstrates this effect in a biological neuron model and the equivalent circuit in neuromorphic hardware modeling dendrites. We present a multi-compartment neuromorphic dendritic model that produces a multiplication-like effect using the shunting inhibition mechanism by varying leakage along the dendritic cable. Dendritic computation in neuromorphic architectures has the potential to increase complexity in single neurons and reduce the energy footprint for neural networks by enabling computation in the interconnect.

References

  1. LF Abbott. 1991. Realistic synaptic inputs for model neural networks. Network: Computation in Neural Systems 2, 3 (1991), 245–258.Google ScholarGoogle ScholarCross RefCross Ref
  2. Richard A Andersen, Greg K Essick, and Ralph M Siegel. 1985. Encoding of spatial location by posterior parietal neurons. Science 230, 4724 (1985), 456–458.Google ScholarGoogle Scholar
  3. Richard A Andersen and Vernon B Mountcastle. 1983. The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience 3, 3 (1983), 532–548.Google ScholarGoogle ScholarCross RefCross Ref
  4. Stephen Blomfield. 1974. Arithmetical operations performed by nerve cells. Brain research 69, 1 (1974), 115–124.Google ScholarGoogle Scholar
  5. Kwabena Boahen. 2022. Dendrocentric learning for synthetic intelligence. Nature 612, 7938 (2022), 43–50.Google ScholarGoogle Scholar
  6. Lyle J Borg-Graham, Cyril Monier, and Yves Fregnac. 1998. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 6683 (1998), 369–373.Google ScholarGoogle Scholar
  7. Peter R Brotchie, Richard A Andersen, Lawrence H Snyder, and Sabrina J Goodman. 1995. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375, 6528 (1995), 232–235.Google ScholarGoogle Scholar
  8. Matteo Carandini and David J Heeger. 1994. Summation and division by neurons in primate visual cortex. Science 264, 5163 (1994), 1333–1336.Google ScholarGoogle Scholar
  9. Matteo Carandini, David J Heeger, and J Anthony Movshon. 1997. Linearity and normalization in simple cells of the macaque primary visual cortex. Journal of Neuroscience 17, 21 (1997), 8621–8644.Google ScholarGoogle ScholarCross RefCross Ref
  10. Frances S Chance. 2020. Interception from a Dragonfly Neural Network Model. In International Conference on Neuromorphic Systems 2020. 1–5.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Frances S Chance, Larry F Abbott, and Alex D Reyes. 2002. Gain modulation from background synaptic input. Neuron 35, 4 (2002), 773–782.Google ScholarGoogle ScholarCross RefCross Ref
  12. Brent Doiron, André Longtin, Neil Berman, and Leonard Maler. 2001. Subtractive and divisive inhibition: effect of voltage-dependent inhibitory conductances and noise. Neural computation 13, 1 (2001), 227–248.Google ScholarGoogle Scholar
  13. P Fatt and B Katz. 1953. The effect of inhibitory nerve impulses on a crustacean muscle fibre. The Journal of physiology 121, 2 (1953), 374.Google ScholarGoogle ScholarCross RefCross Ref
  14. Yves Frégnac, Cyril Monier, Frédéric Chavane, Pierre Baudot, and Lyle Graham. 2003. Shunting inhibition, a silent step in visual cortical computation. Journal of Physiology-Paris 97, 4-6 (2003), 441–451.Google ScholarGoogle ScholarCross RefCross Ref
  15. Fabrizio Gabbiani, Holger G Krapp, Christof Koch, and Gilles Laurent. 2002. Multiplicative computation in a visual neuron sensitive to looming. Nature 420, 6913 (2002), 320–324.Google ScholarGoogle Scholar
  16. Fabrizio Gabbiani, Jens Midtgaard, and Thomas Knopfel. 1994. Synaptic integration in a model of cerebellar granule cells. Journal of neurophysiology 72, 2 (1994), 999–1009.Google ScholarGoogle ScholarCross RefCross Ref
  17. Suma George, Jennifer Hasler, Scott Koziol, Stephen Nease, and Shubha Ramakrishnan. 2013. Low power dendritic computation for wordspotting. Journal of Low Power Electronics and Applications 3, 2 (2013), 73–98.Google ScholarGoogle ScholarCross RefCross Ref
  18. Suma George, Sihwan Kim, Sahil Shah, Jennifer Hasler, Michelle Collins, Farhan Adil, Richard Wunderlich, Stephen Nease, and Shubha Ramakrishnan. 2016. A programmable and configurable mixed-mode FPAA SoC. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 6 (2016), 2253–2261.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lukas N Groschner, Jonatan G Malis, Birte Zuidinga, and Alexander Borst. 2022. A biophysical account of multiplication by a single neuron. Nature 603, 7899 (2022), 119–123.Google ScholarGoogle Scholar
  20. Juergen Haag, Adrian Wertz, and Alexander Borst. 2010. Central gating of fly optomotor response. Proceedings of the National Academy of Sciences 107, 46 (2010), 20104–20109.Google ScholarGoogle ScholarCross RefCross Ref
  21. Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas, and H Sebastian Seung. 2000. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. nature 405, 6789 (2000), 947–951.Google ScholarGoogle Scholar
  22. Jiang Hao, Xu-dong Wang, Yang Dan, Mu-ming Poo, and Xiao-hui Zhang. 2009. An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proceedings of the National Academy of Sciences 106, 51 (2009), 21906–21911.Google ScholarGoogle ScholarCross RefCross Ref
  23. Bernhard Hassenstein and Werner Reichardt. 1956. Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Zeitschrift für Naturforschung B 11, 9-10 (1956), 513–524.Google ScholarGoogle Scholar
  24. David J Heeger. 1992. Normalization of cell responses in cat striate cortex. Visual neuroscience 9, 2 (1992), 181–197.Google ScholarGoogle Scholar
  25. Gary R Holt and Christof Koch. 1997. Shunting inhibition does not have a divisive effect on firing rates. Neural computation 9, 5 (1997), 1001–1013.Google ScholarGoogle Scholar
  26. Stephen J Huston and Holger G Krapp. 2009. Nonlinear integration of visual and haltere inputs in fly neck motor neurons. Journal of Neuroscience 29, 42 (2009), 13097–13105.Google ScholarGoogle ScholarCross RefCross Ref
  27. Christof Koch and Tomaso Poggio. 1992. Multiplying with synapses and neurons. In Single neuron computation. Elsevier, 315–345.Google ScholarGoogle Scholar
  28. Christof Koch, Tomaso Poggio, and Vincent Torre. 1983. Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing.Proceedings of the National Academy of Sciences 80, 9 (1983), 2799–2802.Google ScholarGoogle Scholar
  29. Maria Lavzin, Sophia Rapoport, Alon Polsky, Liora Garion, and Jackie Schiller. 2012. Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490, 7420 (2012), 397–401.Google ScholarGoogle Scholar
  30. Guosong Liu. 2004. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nature neuroscience 7, 4 (2004), 373–379.Google ScholarGoogle Scholar
  31. Michael London and Michael Hausser. 2005. Dendritic Computation. Annual Review of Neuroscience 28 (July 2005), 503–532.Google ScholarGoogle Scholar
  32. Carrie J McAdams and John HR Maunsell. 1999. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience 19, 1 (1999), 431–441.Google ScholarGoogle ScholarCross RefCross Ref
  33. Bartlett W Mel. 1993. Synaptic integration in an excitable dendritic tree. Journal of neurophysiology 70, 3 (1993), 1086–1101.Google ScholarGoogle ScholarCross RefCross Ref
  34. Simon J Mitchell and R Angus Silver. 2003. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 3 (2003), 433–445.Google ScholarGoogle ScholarCross RefCross Ref
  35. Stephen Nease, Suma George, Paul Hasler, Scott Koziol, and Stephen Brink. 2011. Modeling and implementation of voltage-mode CMOS dendrites on a reconfigurable analog platform. IEEE transactions on biomedical circuits and systems 6, 1 (2011), 76–84.Google ScholarGoogle Scholar
  36. Mark E Nelson. 1994. A mechanism for neuronal gain control by descending pathways. Neural Computation 6, 2 (1994), 242–254.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. José Luis Peña and Masakazu Konishi. 2001. Auditory spatial receptive fields created by multiplication. Science 292, 5515 (2001), 249–252.Google ScholarGoogle Scholar
  38. Alon Poleg-Polsky and Jeffrey S Diamond. 2016. NMDA receptors multiplicatively scale visual signals and enhance directional motion discrimination in retinal ganglion cells. Neuron 89, 6 (2016), 1277–1290.Google ScholarGoogle ScholarCross RefCross Ref
  39. Alexandre Pouget and Terrence J Sejnowski. 1997. Spatial transformations in the parietal cortex using basis functions. Journal of cognitive neuroscience 9, 2 (1997), 222–237.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Steven A Prescott and Yves De Koninck. 2003. Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proceedings of the National Academy of Sciences 100, 4 (2003), 2076–2081.Google ScholarGoogle ScholarCross RefCross Ref
  41. Ning Qian and Terrence J Sejnowski. 1990. When is an inhibitory synapse effective?Proceedings of the National Academy of Sciences 87, 20 (1990), 8145–8149.Google ScholarGoogle Scholar
  42. Shubha Ramakrishnan, Richard Wunderlich, Jennifer Hasler, and Suma George. 2013. Neuron array with plastic synapses and programmable dendrites. IEEE transactions on biomedical circuits and systems 7, 5 (2013), 631–642.Google ScholarGoogle ScholarCross RefCross Ref
  43. Kaushik Roy, Indranil Chakraborty, Mustafa Ali, Aayush Ankit, and Amogh Agrawal. 2020. In-memory computing in emerging memory technologies for machine learning: an overview. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.Google ScholarGoogle ScholarCross RefCross Ref
  44. Emilio Salinas and LF Abbott. 1997. Invariant visual responses from attentional gain fields. Journal of Neurophysiology 77, 6 (1997), 3267–3272.Google ScholarGoogle ScholarCross RefCross Ref
  45. Emilio Salinas and Larry F Abbott. 1995. Transfer of coded information from sensory to motor networks. Journal of Neuroscience 15, 10 (1995), 6461–6474.Google ScholarGoogle ScholarCross RefCross Ref
  46. Emilio Salinas and Laurence F Abbott. 1996. A model of multiplicative neural responses in parietal cortex.Proceedings of the national academy of sciences 93, 21 (1996), 11956–11961.Google ScholarGoogle Scholar
  47. Emilio Salinas and Peter Thier. 2000. Gain modulation: a major computational principle of the central nervous system. Neuron 27, 1 (2000), 15–21.Google ScholarGoogle ScholarCross RefCross Ref
  48. Johannes Schemmel, Laura Kriener, Paul Müller, and Karlheinz Meier. 2017. An accelerated analog neuromorphic hardware system emulating NMDA-and calcium-based non-linear dendrites. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2217–2226.Google ScholarGoogle ScholarCross RefCross Ref
  49. Bryan A Seybold, Elizabeth AK Phillips, Christoph E Schreiner, and Andrea R Hasenstaub. 2015. Inhibitory actions unified by network integration. Neuron 87, 6 (2015), 1181–1192.Google ScholarGoogle ScholarCross RefCross Ref
  50. Marianne R Smith, Alexandra B Nelson, and Sascha Du Lac. 2002. Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. Journal of neurophysiology 87, 4 (2002), 2031–2042.Google ScholarGoogle ScholarCross RefCross Ref
  51. Mandyam V Srinivasan and Gary D Bernard. 1976. A proposed mechanism for multiplication of neural signals. Biological cybernetics 21, 4 (1976), 227–236.Google ScholarGoogle Scholar
  52. Stefan Treue and Julio C Martinez Trujillo. 1999. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 6736 (1999), 575–579.Google ScholarGoogle Scholar
  53. Yingxue Wang and Shih-Chii Liu. 2012. Active processing of spatio-temporal input patterns in silicon dendrites. IEEE transactions on biomedical circuits and systems 7, 3 (2012), 307–318.Google ScholarGoogle Scholar
  54. Qiangfei Xia and J Joshua Yang. 2019. Memristive crossbar arrays for brain-inspired computing. Nature materials 18, 4 (2019), 309–323.Google ScholarGoogle Scholar
  55. David Zipser and Richard A Andersen. 1988. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 6158 (1988), 679–684.Google ScholarGoogle Scholar

Index Terms

  1. Shunting Inhibition as a Neural-Inspired Mechanism for Multiplication in Neuromorphic Architectures

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format