skip to main content
research-article
Free Access

Toward Basing Cryptography on the Hardness of EXP

Published:21 April 2023Publication History
Skip Abstract Section

Abstract

Let Kt(x) denote the Levin-Kolmogorov Complexity of the string x, and let MKtP denote the language of pairs (x, k) having the property that Kt(x) ≤ k. We demonstrate that:

• MKtP ∉ HeurnegBPP (i.e., MKtP is two-sided error mildly average-case hard) iff infinitely-often OWFs exist.

• MKtP ∉ AvgnegBPP (i.e., MKtP is errorless mildly average-case hard) iff EXP ≠ BPP.

Taken together, these results show that the only "gap" toward getting (infinitely-often) OWFs from the assumption that EXP ≠ BPP is the seemingly "minor" technical gap between two-sided error and errorless average-case hardness of the MKtP problem.

References

  1. Allender, E., Buhrman, H., Koucký, M., Van Melkebeek, D., Ronneburger, D. Power from random strings. SIAM J. Comput 35, 6 (2006), 1467--1493.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Blum, M., Micali, S. How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comput 13, 4 (1984), 850--864.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bogdanov, A., Trevisan, L. Average-case complexity. Manuscript, 2008. http://arxiv.org/abs/cs.CC/0606037.Google ScholarGoogle Scholar
  4. Buhrman, H., Fortnow, L., Pavan, A. Some results on derandomization. In Annual Symposium on Theoretical Aspects of Computer Science. Springer, 2003, 212--222.Google ScholarGoogle ScholarCross RefCross Ref
  5. Chaitin, G.J. On the simplicity and speed of programs for computing infinite sets of natural numbers. J. ACM 16, 3 (1969), 407--422.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Diffie, W., Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 22, 6 (1976), 644--654.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Goldreich, O., Goldwasser, S., Micali, S. On the cryptographic applications of random functions. In CRYPTO. 1984, 276--288.Google ScholarGoogle Scholar
  8. Goldwasser, S., Micali, S. Probabilistic encryption. J. Comput. Syst. Sci 28, 2 (1984), 270--299.Google ScholarGoogle ScholarCross RefCross Ref
  9. Hartmanis, J. Generalized kolmogorov complexity and the structure of feasible computations. In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983). Nov 1983, 439--445.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hartmanis, J., Stearns, R.E. On the computational complexity of algorithms. Trans. Amer. Math. Soc 117, 1965, 285--306.Google ScholarGoogle ScholarCross RefCross Ref
  11. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M. A pseudorandom generator from any one-way function. SIAM J. Comput. 28, 4 (1999), 364--1396.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Impagliazzo, R., Luby, M. One-way functions are essential for complexity based cryptography (extended abstract). In 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989. 1989, 230--235.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Impagliazzo, R., Wigderson, A. P = BPP if e requires exponential circuits: Derandomizing the xor lemma. In STOC '97. 1997, 220--229.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Impagliazzo, R., Wigderson, A. Randomness vs. time: de-randomization under a uniform assumption. In Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280). IEEE, 1998, 734--743.Google ScholarGoogle Scholar
  15. Ko, K. On the notion of infinite pseudorandom sequences. Theor. Comput. Sci 48, 3 (1986), 9--33.Google ScholarGoogle ScholarCross RefCross Ref
  16. Kolmogorov, A.N. Three approaches to the quantitative definition of information. Int. J. Comput. Math. 2 1--4 (1968), 157--168.Google ScholarGoogle ScholarCross RefCross Ref
  17. Lautemann, C. BPP and the polynomial hierarchy. Inf. Process. Lett 17, 4 (1983), 215--217.Google ScholarGoogle ScholarCross RefCross Ref
  18. Levin, L.A. Universal search problems (russian), translated into English by BA Trakhtenbrot in [27]. Prob. Inf. Transm 9, 3 (1973), 265--266.Google ScholarGoogle Scholar
  19. Levin, L.A. The tale of one-way functions. Prob. Inf. Transm 39, 1 (2003), 92--103.Google ScholarGoogle ScholarCross RefCross Ref
  20. Liu, Y., Pass, R. On one-way functions and Kolmogorov complexity. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16--19, 2020. IEEE, 2020, 1243--1254.Google ScholarGoogle ScholarCross RefCross Ref
  21. Nisan, N., Wigderson, A. Hardness vs randomness. J. Comput. Syst. Sci 49, 2 (1994), 149--167.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ostrovsky, R., Wigderson, A. One-way fuctions are essential for non-trivial zero-knowledge. In ISTCS, 1993, 3--17.Google ScholarGoogle Scholar
  23. Ren, H., Santhanam, R. Hardness of KT characterizes parallel cryptography. Electron. Colloquium Comput. Complex 28, 57 (2021).Google ScholarGoogle Scholar
  24. Sipser, M. A complexity theoretic approach to randomness. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25--27 April, 1983, Boston, Massachusetts, USA. ACM, 1983, 330--335.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sipser, M. Introduction to the theory of computation. ACM Sigact News 27, 1 (1996), 27--29.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Solomonoff, R. A formal theory of inductive inference. Part i. Inf. Control 7, 1 (1964), 1--22.Google ScholarGoogle ScholarCross RefCross Ref
  27. Trakhtenbrot, B.A. A survey of Russian approaches to perebor (brute-force searches) algorithms. Ann. Hist. Comput. 6, 4 (1984), 384--400.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Trevisan, L., Vadhan, S. Pseudorandomness and average-case complexity via uniform reductions. In Proceedings 17th IEEE Annual Conference on Computational Complexity. IEEE Computer Society, 2002, 0129--0129.Google ScholarGoogle Scholar
  29. Yao, A.C. Theory and applications of trapdoor functions (extended abstract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3--5 November 1982. 1982, 80--91.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Toward Basing Cryptography on the Hardness of EXP

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Communications of the ACM
        Communications of the ACM  Volume 66, Issue 5
        May 2023
        92 pages
        ISSN:0001-0782
        EISSN:1557-7317
        DOI:10.1145/3594498
        • Editor:
        • James Larus
        Issue’s Table of Contents

        Copyright © 2023 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 April 2023

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
      • Article Metrics

        • Downloads (Last 12 months)425
        • Downloads (Last 6 weeks)25

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format