skip to main content
10.1145/3587828.3587881acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicscaConference Proceedingsconference-collections
research-article

Alzheimer's Disease Early Diagnosis Based on Resting-State Dynamic Functional Connectivity

Published:20 June 2023Publication History

ABSTRACT

Functional magnetic resonance imaging (fMRI) technology has been widely used in the diagnosis of Alzheimer's disease, but there are some problems such as high data dimension and unclear characteristics. The nonlinear complex network of different brain regions based on the Lyapunov exponents and approximate entropy are extracted in this work. The open data set ADNI (Alzheimer's disease neuroimaging initiative) are used to test. The results show that in the other three different groups and patients with Alzheimer's disease, the accuracy of the classification results using SVM (support vector machine) classifier at the whole brain voxel level can reach more than 99%, which is better than the classification results using the correlation of the original time series. Our findings provide new insights into the complexity of brain structural networks in the process of Alzheimer's disease and other mental diseases.

References

  1. Liang L, Yuan Y, Wei Y, Yu B, Mai W, Duan G, Nong X, Li C, Su J, Zhao L, Zhang Z and Deng D. 2021. Recurrent and concurrent patterns of regional BOLD dynamics and functional connectivity dynamics in cognitive decline. J. Alzheimers Res Ther 13,1 (Jan 2021), 28. https://doi.org/10.1186/s13195-020-00764-6Google ScholarGoogle ScholarCross RefCross Ref
  2. Jose O. Maximo, Cailee M. Nelson and Rajesh K. Kana. 2021. “Unrest while Resting”? Brain entropy in autism spectrum disorder. J. Brain Research 1762 (Jul 2021), 147435. https://doi.org/10.1016/j.brainresGoogle ScholarGoogle ScholarCross RefCross Ref
  3. Jacob JE, Cherian A, Gopakumar K, Iype T, Yohannan DG and Divya KP. Can Chaotic Analysis of Electroencephalogram Aid the Diagnosis of Encephalopathy? J. Neurol Res Int 2018 (May 2018), 8192820. https://doi.org/ 10.1155/2018/8192820Google ScholarGoogle ScholarCross RefCross Ref
  4. Sepehr Salem Ghahfarrokhi and Hamed Khodadadi. 2020. Human brain tumor diagnosis using the combination of the complexity measures and texture features through magnetic resonance image. J. Biomedical Signal Processing and Control 61 (Aug 2020), 102025. https://doi.org/10.1016/j.bspc.2020.102025Google ScholarGoogle ScholarCross RefCross Ref
  5. Jack, C.R., Jr., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P.J., L. Whitwell, J., Ward, C., Dale, A.M., Felmlee, J.P., Gunter, J.L., Hill, D.L., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C.S., Gunnar Krueger, , Ward, H.A., Metzger, G.J., Scott, K.T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J.P., Fleisher, A.S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J. and Weiner, M.W. 2008. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27,4 (Apr 2008), 685-691. https://doi.org/10.1002/jmri.21049Google ScholarGoogle ScholarCross RefCross Ref
  6. Chao-Gan Y and Yu-Feng Z. 2010. DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. J. Front Syst Neurosci 4, 13 (May 2010). https://10.3389/fnsys.2010.00013Google ScholarGoogle Scholar
  7. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B and Joliot M. 2002. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. J. Neuroimage 15, 1(Jan 2002), 273-89. https://doi.org/ 10.1006/nimg.2001.0978Google ScholarGoogle ScholarCross RefCross Ref
  8. Sokunbi MO, Cameron GG, Ahearn TS, Murray AD and Staff RT. 2015. Fuzzy approximate entropy analysis of resting state fMRI signal complexity across the adult life span. J. Med Eng Phys 37, 11 (Nov 2015), 1082-1090. https://doi.org/ 10.1016/j.medengphy.2015.09.001Google ScholarGoogle ScholarCross RefCross Ref
  9. Wang Z, Lou H and Sun J. 2011. fMRI functional connectivity analysis of anxiety disease patients based on spatiotemporal Lyapunov exponent method. J. Zhongguo Yi Liao Qi Xie Za Zhi 35, 4 (Jul 2011), 294-7. Chinese.Google ScholarGoogle Scholar
  10. Keilholz S, Maltbie E, Zhang X, Yousefi B, Pan WJ, Xu N, Nezafati M, LaGrow TJ and Guo Y. 2020. Relationship Between Basic Properties of BOLD Fluctuations and Calculated Metrics of Complexity in the Human Connectome Project. J. Front Neurosci 15, 14(Sep 2020), 550923. https://doi.org/ 10.3389/fnins.2020.550923Google ScholarGoogle ScholarCross RefCross Ref
  11. Li Lin and Fulei Chu. 2011. Approximate entropy as acoustic emission feature parametric data for crack detection. J. Nondestructive Testing and Evaluation 26, 02 (Jul 2011), 119-128, https://doi.org/ 10.1080/10589759.2010.521825Google ScholarGoogle ScholarCross RefCross Ref
  12. Xiao L, Cai B, Qu G, Zhang G, Stephen JM, Wilson TW, Calhoun VD and Wang YP. 2022. Distance Correlation-Based Brain Functional Connectivity Estimation and Non-Convex Multi-Task Learning for Developmental fMRI Studies. J. IEEE Trans Biomed Eng 69, 10 (Oct 2022), 3039-3050. https://doi.org/ 10.1109/TBME.2022.3160447Google ScholarGoogle ScholarCross RefCross Ref
  13. Qiong Liu, Qiong Gu and Zhao Wu. 2017. Feature selection method based on support vector machine and shape analysis for high-throughput medical data. J. Computers in Biology and Medicine 91,(Dec 2017) 103-111. https://doi.org/10.1016/j.compbiomed.2017.10.008Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kamarajan C, Ardekani BA, Pandey AK, Kinreich S, Pandey G, Chorlian DB, Meyers JL, Zhang J, Bermudez E, Kuang W, Stimus AT and Porjesz B. 2022. Differentiating Individuals with and without Alcohol Use Disorder Using Resting-State fMRI Functional Connectivity of Reward Network, Neuropsychological Performance, and Impulsivity Measures. J. Behav Sci (Basel) 12, 5 s(Apr 2022), 128. https://doi.org/ 10.3390/bs12050128Google ScholarGoogle ScholarCross RefCross Ref
  15. Li, X and Li, K. 2022. High-dimensional imbalanced biomedical data classification based on P-AdaBoost-PAUC algorithm. J Supercomput 78, 14(Sep 2022), 16581–16604. https://doi.org/10.1007/s11227-022-04509-0Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Goldberger AL, Peng CK and Lipsitz LA. 2002. What is physiologic complexity and how does it change with aging and disease? J. Neurobiology of Aging 23, 1 (Jan-Feb 2002), 23-26. https://doi.org/ 10.1016/s0197-4580(01)00266-4Google ScholarGoogle ScholarCross RefCross Ref
  17. John, M., Ikuta, T. and Ferbinteanu, J. 2017. Graph analysis of structural brain networks in Alzheimer's disease: beyond small world properties. J. Brain Struct Funct 222 (Dec 2020), 923–942. https://doi.org/10.1007/s00429-016-1255-4Google ScholarGoogle ScholarCross RefCross Ref
  18. Abásolo D, Escudero J, Hornero R, Gómez C and Espino P. 2008. Approximate entropy and auto mutual information analysis of the electroencephalogram in Alzheimer's disease patients. J. Med Biol Eng Comput 46, 10(Oct 2008), 1019-28. https://doi.org/ 10.1007/s11517-008-0392-1Google ScholarGoogle ScholarCross RefCross Ref
  19. Sun J, Wang B, Niu Y, Tan Y, Fan C, Zhang N, Xue J, Wei J and Xiang J. 2020. Complexity Analysis of EEG, MEG, and fMRI in Mild Cognitive Impairment and Alzheimer's Disease: A Review. J. Entropy (Basel) 22, 2(Feb 2020), 239. https://doi.org/ 10.3390/e22020239Google ScholarGoogle ScholarCross RefCross Ref
  20. Bi Xia-an, Xu Qian, Luo Xianhao, Sun Qi and Wang Zhigang. 2018. Analysis of Progression Toward Alzheimer's Disease Based on Evolutionary Weighted Random Support Vector Machine Cluster. J. FRONTIERS IN NEUROSCIENCE 12 (Oct 2018), 1662-453X. https://www.frontiersin.org/articles/10.3389/fnins.2018.00716Google ScholarGoogle Scholar
  21. Jitsuishi, T and Yamaguchi, A. 2022. Searching for optimal machine learning model to classify mild cognitive impairment (MCI) subtypes using multimodal MRI data. J. Sci Rep 12,1 (Mar 2022), 4284. https://doi.org/10.1038/s41598-022-08231-yGoogle ScholarGoogle ScholarCross RefCross Ref
  22. Meng X, Wu Y, Liang Y, Zhang D, Xu Z, Yang X and Meng L. 2022. A Triple-Network Dynamic Connection Study in Alzheimer's Disease. J. Front Psychiatry13 (Apr 2022), 862958. https://doi.org/ 10.3389/fpsyt.2022.862958Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Alzheimer's Disease Early Diagnosis Based on Resting-State Dynamic Functional Connectivity

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICSCA '23: Proceedings of the 2023 12th International Conference on Software and Computer Applications
      February 2023
      385 pages
      ISBN:9781450398589
      DOI:10.1145/3587828

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 June 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)40
      • Downloads (Last 6 weeks)3

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format