skip to main content
10.1145/3588001.3609362acmconferencesArticle/Chapter ViewAbstractPublication PagescompassConference Proceedingsconference-collections
research-article

Adapting Forests to an Uncertain Climate: A Critical Technology Review

Published:16 August 2023Publication History

ABSTRACT

Forests across the world play a crucial role in the fight against the climate catastrophe as well as mass extinction that characterise the Anthropocene. However, they are also increasingly threatened by destructive human practices such as agriculture and mining, but also climate change itself. This article focuses on forests in Germany, which have been devastated in recent years by heat, drought and bark beetles. Hence, forests and associated forestry practices are in urgent need of adaptation to a different climate. Several digital applications have been developed to assist with this effort. Adaptation is complicated by the epistemological challenge of climate change, that the uncertainty of how exactly climate change will affect specific local sites, as well as future markets for forest products, poses. In this short paper we review how two applications address this uncertainty in their approach to supporting the climate adaptation of forests and draw out preliminary lessons for HCI research and design.

References

  1. Mark S. Ackerman, Juri Dachtera, Volkmar Pipek, and Volker Wulf. 2013. Sharing Knowledge and Expertise: The CSCW View of Knowledge Management. Computer Supported Cooperative Work (CSCW) 22, 4-6 (Aug. 2013), 531–573. https://doi.org/10.1007/s10606-013-9192-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Mark S. Ackerman and David W. McDonald. 1996. Answer Garden 2: Merging Organizational Memory with Collaborative Help. In Proceedings of the 1996 ACM Conference on Computer Supported Cooperative Work(CSCW ’96). Association for Computing Machinery, New York, NY, USA, 97–105. https://doi.org/10.1145/240080.240203Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. William M. Adams. 2018. Conservation by Algorithm. Oryx 52, 1 (Jan. 2018), 1–2. https://doi.org/10.1017/S0030605317001764Google ScholarGoogle ScholarCross RefCross Ref
  4. William M. Adams. 2019. Geographies of Conservation II: Technology, Surveillance and Conservation by Algorithm. Progress in Human Geography 43, 2 (April 2019), 337–350. https://doi.org/10.1177/0309132517740220Google ScholarGoogle ScholarCross RefCross Ref
  5. Arun Agrawal. 2005. Environmentality: Technologies of Government and the Making of Subjects. Duke University Press. https://doi.org/10.2307/j.ctv11sn32g jstor:j.ctv11sn32gGoogle ScholarGoogle ScholarCross RefCross Ref
  6. Christine Bauer and Simone Kriglstein. 2015. Analysis of Motivation Strategies in Running Tracking Applications. In Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia(MoMM 2015). Association for Computing Machinery, New York, NY, USA, 73–79. https://doi.org/10.1145/2837126.2839316Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Max Bearak and Manuela Andreoni. 2022. Brazil, Indonesia and Congo Sign Rainforest Protection Pact. The New York Times (Nov. 2022).Google ScholarGoogle Scholar
  8. Eeva Berglund. 2000. FORESTRY EXPERTISE AND NATIONAL NARRATIVES: SOME CONSEQUENCES FOR OLD-GROWTH CONFLICTS IN FINLAND. Worldviews: Global Religions, Culture, and Ecology 4, 1 (2000), 47–67. https://doi.org/10.1163/156853500507726Google ScholarGoogle ScholarCross RefCross Ref
  9. Heidi Biggs, Tejaswini Joshi, Ries Murphy, Jeffrey Bardzell, and Shaowen Bardzell. 2021. Alternatives to Agrilogistics: Designing for Ecological Thinking. Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (Oct. 2021), 413:1–413:31. https://doi.org/10.1145/3479557Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Udo Bohn and Walter Welß. 2003. Die potenzielle natürliche Vegetation. In Nationalatlas Bundesrepublik Deutschland – Klima, Pflanzen- und Tierwelt. Spektrum Akademischer Verlag, Heidelberg.Google ScholarGoogle Scholar
  11. Elizabeth Bondi, Debadeepta Dey, Ashish Kapoor, Jim Piavis, Shital Shah, Fei Fang, Bistra Dilkina, Robert Hannaford, Arvind Iyer, Lucas Joppa, and Milind Tambe. 2018. AirSim-W: A Simulation Environment for Wildlife Conservation with UAVs. In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies(COMPASS ’18). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3209811.3209880Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Geoffrey C. Bowker. 2000. Biodiversity Datadiversity. Social Studies of Science 30, 5 (Oct. 2000), 643–683. https://doi.org/10.1177/030631200030005001Google ScholarGoogle ScholarCross RefCross Ref
  13. Christina Bremer, Bran Knowles, and Adrian Friday. 2022. Have We Taken On Too Much?: A Critical Review of the Sustainable HCI Landscape. In CHI Conference on Human Factors in Computing Systems. ACM, New Orleans LA USA, 1–11. https://doi.org/10.1145/3491102.3517609Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Bundesumweltministeriums. 2022. Klimaauswirkungen von Heizen mit Holz. https://www.bmuv.de/WS6881.Google ScholarGoogle Scholar
  15. Jorge Caballero Espejo, Max Messinger, Francisco Román-Dañobeytia, Cesar Ascorra, Luis E. Fernandez, and Miles Silman. 2018. Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sensing 10, 12 (Dec. 2018), 1903. https://doi.org/10.3390/rs10121903Google ScholarGoogle ScholarCross RefCross Ref
  16. Andrea Botero Cabrera, Markéta Dolejšová, Jaz Hee-jeong Choi, and Cristina Ampatzidou. 2022. Open Forest: Walking with Forests, Stories, Data, and Other Creatures. Interactions 29, 1 (Jan. 2022), 48–53. https://doi.org/10.1145/3501766Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Taj Campbell, Brian Ngo, and James Fogarty. 2008. Game Design Principles in Everyday Fitness Applications. In Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work(CSCW ’08). Association for Computing Machinery, New York, NY, USA, 249–252. https://doi.org/10.1145/1460563.1460603Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Sophie Chao. 2022. In the Shadow of the Palms: More-Than-Human Becomings in West Papua. Duke University Press, Durham, NC.Google ScholarGoogle Scholar
  19. Robert Costanza, Rudolf de Groot, Leon Braat, Ida Kubiszewski, Lorenzo Fioramonti, Paul Sutton, Steve Farber, and Monica Grasso. 2017. Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go?Ecosystem Services 28 (Dec. 2017), 1–16. https://doi.org/10.1016/j.ecoser.2017.09.008Google ScholarGoogle Scholar
  20. Débora de Castro Leal, Ana Maria Bustamante Duarte, Max Krüger, and Angelika Strohmayer. 2021. Into the Mine: Wicked Reflections on Decolonial Thinking and Technologies. In C&T ’21: Proceedings of the 10th International Conference on Communities & Technologies - Wicked Problems in the Age of Tech(C&T ’21). Association for Computing Machinery, New York, NY, USA, 269–280. https://doi.org/10.1145/3461564.3461578Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Tshering Dema, Margot Brereton, Michael Esteban, Alessandro Soro, Sherub Sherub, and Paul Roe. 2020. Designing in the Network of Relations for Species Conservation: The Playful Tingtibi Community Birdhouse. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu HI USA, 1–14. https://doi.org/10.1145/3313831.3376713Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Tshering Dema, Margot Brereton, and Paul Roe. 2019. Designing Participatory Sensing with Remote Communities to Conserve Endangered Species. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, Glasgow Scotland Uk, 1–16. https://doi.org/10.1145/3290605.3300894Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Carl DiSalvo, Phoebe Sengers, and Hrönn Brynjarsdóttir. 2010. Mapping the Landscape of Sustainable HCI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, Atlanta Georgia USA, 1975–1984. https://doi.org/10.1145/1753326.1753625Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Gokhan Egri, Xinran Han, Zilin Ma, Priyanka Surapaneni, and Sunandan Chakraborty. 2022. Detecting Hotspots of Human-Wildlife Conflicts in India Using News Articles and Aerial Images. In ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies (COMPASS)(COMPASS ’22). Association for Computing Machinery, New York, NY, USA, 375–385. https://doi.org/10.1145/3530190.3534818Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hamid Ekbia and Bonnie Nardi. 2016. Social Inequality and HCI: The View from Political Economy. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems(CHI ’16). Association for Computing Machinery, New York, NY, USA, 4997–5002. https://doi.org/10.1145/2858036.2858343Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Öko-Institut e.V. (oeko.de). 2022. Tag des Baumes: CO2-Fußabdruck von Holz korrekt berechnen. https://www.oeko.de/presse/archiv-pressemeldungen/presse-detailseite/2022/tag-des-baumes-co2-fussabdruck-von-holz-korrekt-berechnen.Google ScholarGoogle Scholar
  27. Tom Feltwell, Shaun Lawson, Enrique Encinas, Conor Linehan, Ben Kirman, Deborah Maxwell, Tom Jenkins, and Stacey Kuznetsov. 2018. "Grand Visions" for Post-Capitalist Human-Computer Interaction. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems(CHI EA ’18). Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3170427.3170609Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Karen Filbee-Dexter, Jeremy Pittman, Heather A. Haig, Steven M. Alexander, Celia C. Symons, and Matthew J. Burke. 2017. Ecological Surprise: Concept, Synthesis, and Social Dimensions. Ecosphere 8, 12 (Dec. 2017). https://doi.org/10.1002/ecs2.2005Google ScholarGoogle Scholar
  29. M. D. Flannigan, B. D. Amiro, K. A. Logan, B. J. Stocks, and B. M. Wotton. 2006. Forest Fires and Climate Change in the 21ST Century. Mitigation and Adaptation Strategies for Global Change 11, 4 (July 2006), 847–859. https://doi.org/10.1007/s11027-005-9020-7Google ScholarGoogle ScholarCross RefCross Ref
  30. Jennifer Gabrys. 2020. Smart Forests and Data Practices: From the Internet of Trees to Planetary Governance. Big Data & Society 7, 1 (Jan. 2020), 2053951720904871. https://doi.org/10.1177/2053951720904871Google ScholarGoogle ScholarCross RefCross Ref
  31. Jennifer Gabrys, Michelle Westerlaken, Danilo Urzedo, Max Ritts, and Trishant Simlai. 2022. Reworking the Political in Digital Forests: The Cosmopolitics of Socio-Technical Worlds. Progress in Environmental Geography (Aug. 2022), 275396872211178. https://doi.org/10.1177/27539687221117836Google ScholarGoogle Scholar
  32. Juliane Geyer, Iris Kiefer, Stefan Kreft, Veronica Chavez, Nick Salafsky, Florian Jeltsch, and Pierre L. Ibisch. 2011. Classification of Climate-Change-Induced Stresses on Biological Diversity: Climate-Change-Induced Stresses. Conservation Biology 25, 4 (Aug. 2011), 708–715. https://doi.org/10.1111/j.1523-1739.2011.01676.xGoogle ScholarGoogle Scholar
  33. M.H. Glantz, C.M. Moore, D.G. Streets, N. Bhatti, C.H. Rosa, and T.R. Stewart. 1998. Exploring the Concept of Climate Surprises. A Review of the Literature on the Concept of Surprise and How It Is Related to Climate Change. Technical Report ANL/DIS/TM–46, 666195. ANL/DIS/TM–46, 666195 pages. https://doi.org/10.2172/666195Google ScholarGoogle Scholar
  34. Miriam Greis, Passant El. Agroudy, Hendrik Schuff, Tonja Machulla, and Albrecht Schmidt. 2016. Decision-Making under Uncertainty: How the Amount of Presented Uncertainty Influences User Behavior. In Proceedings of the 9th Nordic Conference on Human-Computer Interaction(NordiCHI ’16). Association for Computing Machinery, New York, NY, USA, 1–4. https://doi.org/10.1145/2971485.2971535Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Miriam Greis, Jessica Hullman, Michael Correll, Matthew Kay, and Orit Shaer. 2017. Designing for Uncertainty in HCI: When Does Uncertainty Help?. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems(CHI EA ’17). Association for Computing Machinery, New York, NY, USA, 593–600. https://doi.org/10.1145/3027063.3027091Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Laura Grönewald, Julian Weiblen, Matthias Laschke, Lara Christoforakos, and Marc Hassenzahl. 2023. Sustainability by Design. How to Encourage Users to Choose Energy-Saving Programs and Settings When Washing Laundry. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems(CHI ’23). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3544548.3581150Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Marc Grünig, Rupert Seidl, and Cornelius Senf. 2023. Increasing Aridity Causes Larger and More Severe Forest Fires across Europe. Global Change Biology 29, 6 (2023), 1648–1659. https://doi.org/10.1111/gcb.16547Google ScholarGoogle ScholarCross RefCross Ref
  38. Amrita Gupta, Caleb Robinson, and Bistra Dilkina. 2018. Infrastructure Resilience for Climate Adaptation. In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies(COMPASS ’18). Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3209811.3209859Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Klaus Hennenberg and Hannes Bötcher. 2022. Wer mit Waldholz heizt, verbrennt einen wertvollen CO2-Speicher!Google ScholarGoogle Scholar
  40. Pierre L. Ibisch, Jeannette Blumröder, Charlotte Gohr, and Lars Schmitt. 2021. Konzept zur Förderung der Funktionen und Leistungen von Waldökosystemen in Deutschland. Technical Report. Centre for Econics and Ecosystem Management an der Hochschule für nachhaltige Entwicklung Eberswalde, Eberswalde, Germany.Google ScholarGoogle Scholar
  41. Svenja Keune, Asya Ilgün, and Colleen Ludwig. forthcoming, expected in 2023. I.N.S.E.C.T—Summercamp: Developing Multispecies Design Perspectives, Practices, and Discourse Through Co-Creating (in) Community. Springer Nature.Google ScholarGoogle Scholar
  42. Bran Knowles, Oliver Bates, and Maria Håkansson. 2018. This Changes Sustainable HCI. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3174045Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Lucas Kohnke and Benjamin Luke Moorhouse. 2022. ‘There’s an App for That!’ Writing Technology Reviews for Academic Journals. RELC Journal 53, 1 (April 2022), 261–265. https://doi.org/10.1177/0033688220945419Google ScholarGoogle ScholarCross RefCross Ref
  44. Elizabeth Kolbert. 2015. The Sixth Extinction: An Unnatural History (first picador edition ed.). Picador, Henry Holt and Company, New York.Google ScholarGoogle Scholar
  45. Sandra Krengel and Petra Seidel. 2016. Über die Zunahme thermophiler Schadorganismen in Wäldern am Beispiel der Borkenkäfer. (2016).Google ScholarGoogle Scholar
  46. Markus Kröger. 2020. Deforestation, Cattle Capitalism and Neodevelopmentalism in the Chico Mendes Extractive Reserve, Brazil. The Journal of Peasant Studies 47, 3 (April 2020), 464–482. https://doi.org/10.1080/03066150.2019.1604510Google ScholarGoogle Scholar
  47. Max Krüger, Felix Carros, Michael Ahmadi, Debora de Castro Leal, Maximilian Brandt, and Volker Wulf. 2022. Understanding Forestry Practices to Support Climate Adaption. In Adjunct Proceedings of the 2022 Nordic Human-Computer Interaction Conference. 1–6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Landesbetrieb Wald und Holz NRW. [n. d.]. Der Wald in NRW. https://www.wald-und-holz.nrw.de/wald-in-nrw.Google ScholarGoogle Scholar
  49. Marcus Lindner, Hans Verkerk, and European Forest Institute EFI. 2022. How Has Climate Change Affected EU Forests and What Might Happen next? | European Forest Institute.Google ScholarGoogle Scholar
  50. Szu-Yu (Cyn) Liu, Shaowen Bardzell, and Jeffrey Bardzell. 2019. Symbiotic Encounters: HCI and Sustainable Agriculture. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300547Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Jesse A. Logan, Jacques Régnière, and James A. Powell. 2003. Assessing the Impacts of Global Warming on Forest Pest Dynamics. Frontiers in Ecology and the Environment 1, 3 (2003), 130–137. https://doi.org/10.1890/1540-9295(2003)001[0130:ATIOGW]2.0.CO;2Google ScholarGoogle ScholarCross RefCross Ref
  52. Joycelyn Longdon. 2023. Visualising Forest Sound: Justice-led Ecoacoustic Data Interaction. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems(CHI EA ’23). Association for Computing Machinery, New York, NY, USA, 1–5. https://doi.org/10.1145/3544549.3577039Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Sandra Machalica, Dr Stefan Franz, Theresia Utami, Dr Berthold Mertens, Marcel Waetke, Christoph Rath, Andreas Runze, Martin Stöcker, Dr Sebastian, Dr Thorsten Mrosek, and Dr Ralf Petercord. 2022. Weiterentwickeltes Internetportal Waldinfo.NRW. Technical Report. Wald und Holz NRW.Google ScholarGoogle Scholar
  54. Chrystal S. Mantyka-pringle, Tara G. Martin, and Jonathan R. Rhodes. 2012. Interactions between Climate and Habitat Loss Effects on Biodiversity: A Systematic Review and Meta-Analysis. Global Change Biology 18, 4 (2012), 1239–1252. https://doi.org/10.1111/j.1365-2486.2011.02593.xGoogle ScholarGoogle ScholarCross RefCross Ref
  55. Lorenzo Marini, Matthew P. Ayres, Andrea Battisti, and Massimo Faccoli. 2012. Climate Affects Severity and Altitudinal Distribution of Outbreaks in an Eruptive Bark Beetle. Climatic Change 115, 2 (Nov. 2012), 327–341. https://doi.org/10.1007/s10584-012-0463-zGoogle ScholarGoogle ScholarCross RefCross Ref
  56. Christian Messier, Jürgen Bauhus, Frederik Doyon, Fanny Maure, Rita Sousa-Silva, Philippe Nolet, Marco Mina, Núria Aquilué, Marie-Josée Fortin, and Klaus Puettmann. 2019. The Functional Complex Network Approach to Foster Forest Resilience to Global Changes. Forest Ecosystems 6, 1 (April 2019), 21. https://doi.org/10.1186/s40663-019-0166-2Google ScholarGoogle ScholarCross RefCross Ref
  57. Boyan Mladenov, Lorenzo Damiani, Pietro Giribone, and Roberto Revetria. 2018. A Short Review of the SDKs and Wearable Devices to Be Used for AR Application for Industrial Working Environment. (2018).Google ScholarGoogle Scholar
  58. Stuart Moran, Nadia Pantidi, Tom Rodden, Alan Chamberlain, Chloe Griffiths, Davide Zilli, Geoff Merrett, and Alex Rogers. 2014. Listening to the Forest and Its Curators: Lessons Learnt from a Bioacoustic Smartphone Application Deployment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’14). Association for Computing Machinery, New York, NY, USA, 2387–2396. https://doi.org/10.1145/2556288.2557022Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Ministerium für Umwelt Landwirtschaft Natur-und Verbraucherschutz des Landes Nordrhein-Westfalen MULNV NRW. 2019. Landeswaldbericht 2019. Bericht Über Lage Und Entwicklung Der Forstwirtschaft in Nordrhein-Westfalen. Technical Report. Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen, Düsseldorf.Google ScholarGoogle Scholar
  60. Ministerium für Umwelt Landwirtschaft Natur-und Verbraucherschutz des Landes Nordrhein-Westfalen MULNV NRW. 2021. Waldbaukonzept Nordrhein-Westfalen - Empfehlungen für eine nachhaltige Waldbewirtschaftung. Technical Report. Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen Referat Öffentlichkeitsarbeit.Google ScholarGoogle Scholar
  61. Ministerium für Umwelt Landwirtschaft Natur-und Verbraucherschutz des Landes Nordrhein-Westfalen MULNV NRW. 2022. Waldzustandsbericht NRW 2022. Technical Report. Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen, Düsseldorf.Google ScholarGoogle Scholar
  62. Kana Muramatsu, Hiroki Kobayashi, Junya Okuno, Akio Fujiwara, Kazuhiko Nakamura, and Kaoru Saito. 2014. The Realization of New Virtual Forest Experience Environment through PDA. In Proceedings of the 16th International Conference on Human-computer Interaction with Mobile Devices & Services(MobileHCI ’14). Association for Computing Machinery, New York, NY, USA, 421–424. https://doi.org/10.1145/2628363.2633570Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Dan Parker, Asya Ilgün, Ariel Cheng Sin Lim, Hana Vašatko, Danvy Vu, Nathalia Piorecka, and Svenja Keune. forthcoming, expected in 2023. I.N.S.E.C.T. Wall Twin: Designing with and For Insects, Fungi, and Humans. Temes de Disseny 39 (forthcoming, expected in 2023). Emerging Habitats. Design as a Worldmaking Agent.Google ScholarGoogle Scholar
  64. Florence Pendrill, Toby A. Gardner, Patrick Meyfroidt, U. Martin Persson, Justin Adams, Tasso Azevedo, Mairon G. Bastos Lima, Matthias Baumann, Philip G. Curtis, Veronique De Sy, Rachael Garrett, Javier Godar, Elizabeth Dow Goldman, Matthew C. Hansen, Robert Heilmayr, Martin Herold, Tobias Kuemmerle, Michael J. Lathuillière, Vivian Ribeiro, Alexandra Tyukavina, Mikaela J. Weisse, and Chris West. 2022. Disentangling the Numbers behind Agriculture-Driven Tropical Deforestation. Science 377, 6611 (Sept. 2022), eabm9267. https://doi.org/10.1126/science.abm9267Google ScholarGoogle ScholarCross RefCross Ref
  65. Millennium Ecosystem Assessment (Program) (Ed.). 2005. Ecosystems and Human Well-Being: Synthesis. Island Press, Washington, DC.Google ScholarGoogle Scholar
  66. Sebastian Prost, Irina Pavlovskaya, Kahina Meziant, Vasilis Vlachokyriakos, and Clara Crivellaro. 2021. Contact Zones: Designing for More-than-Human Food Relations. Proceedings of the ACM on Human-Computer Interaction 5, CSCW1 (April 2021), 47:1–47:24. https://doi.org/10.1145/3449121Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Anton Poikolainen Rosén. 2022. Relating to Soil: Chromatography as a Tool for Environmental Engagement. In Designing Interactive Systems Conference(DIS ’22). Association for Computing Machinery, New York, NY, USA, 1640–1653. https://doi.org/10.1145/3532106.3533503Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Chiara Rossitto, Rob Comber, Jakob Tholander, and Mattias Jacobsson. 2022. Towards Digital Environmental Stewardship: The Work of Caring for the Environment in Waste Management. In CHI Conference on Human Factors in Computing Systems(CHI ’22). Association for Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/3491102.3517679Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Emrys Schoemaker, Reem Talhouk, Catherine Kamanu, Eoghan McDonaugh, Chris McDonaugh, Eliza Casey, Adam Wills, Finn Richardson, and Jonathan Donner. 2022. Social Agriculture: Examining the Affordances of Social Media for Agricultural Practices. In ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies (COMPASS)(COMPASS ’22). Association for Computing Machinery, New York, NY, USA, 476–489. https://doi.org/10.1145/3530190.3534806Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Sabrina Scuri, Marta Ferreira, Nuno Jardim Nunes, Valentina Nisi, and Cathy Mulligan. 2022. Hitting the Triple Bottom Line: Widening the HCI Approach to Sustainability. In CHI Conference on Human Factors in Computing Systems. ACM, New Orleans LA USA, 1–19. https://doi.org/10.1145/3491102.3517518Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Euforgen Secretariat. 2013. Picea Abies.Google ScholarGoogle Scholar
  72. Paul Seidler, Paul Kolling, and Max Hampshire. 2016. Can an Augmented Forest Own and Utilise Itself?Technical Report. 6 pages.Google ScholarGoogle Scholar
  73. Lukas Sieberth. 2014. Inwertsetzung von Ökosystemdienstleistungen - Eine Objektive Bewertung Auf Lokaler Ebene (Remscheid). Technical Report. Waldgenossenschaft Remscheid eG, Remscheid. 81 pages.Google ScholarGoogle Scholar
  74. Robert Soden, Pradnaya Pathak, and Olivia Doggett. 2021. What We Speculate About When We Speculate About Sustainable HCI. In ACM SIGCAS Conference on Computing and Sustainable Societies(COMPASS ’21). Association for Computing Machinery, New York, NY, USA, 188–198. https://doi.org/10.1145/3460112.3471956Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Laura J. Sonter, Diego Herrera, Damian J. Barrett, Gillian L. Galford, Chris J. Moran, and Britaldo S. Soares-Filho. 2017. Mining Drives Extensive Deforestation in the Brazilian Amazon. Nature Communications 8, 1 (Oct. 2017), 1013. https://doi.org/10.1038/s41467-017-00557-wGoogle ScholarGoogle ScholarCross RefCross Ref
  76. Simran Tank. 2021. How to Approach the App Critique Round.Google ScholarGoogle Scholar
  77. Danilo Urzedo, Michelle Westerlaken, and Jennifer Gabrys. 2022. Digitalizing Forest Landscape Restoration: A Social and Political Analysis of Emerging Technological Practices. Environmental Politics 0, 0 (July 2022), 1–26. https://doi.org/10.1080/09644016.2022.2091417Google ScholarGoogle Scholar
  78. Michalis Vitos, Julia Altenbuchner, Matthias Stevens, Gillian Conquest, Jerome Lewis, and Muki Haklay. 2017. Supporting Collaboration with Non-Literate Forest Communities in the Congo-Basin. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing(CSCW ’17). Association for Computing Machinery, New York, NY, USA, 1576–1590. https://doi.org/10.1145/2998181.2998242Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Roderich von Detten. 2022. Ende der Gewissheiten – der normale Ausnahmezustand als forstlicher Paradigmenwechsel. Natur und Landschaft 97, 07 (July 2022), 346–351. https://doi.org/10.19217/NuL2022-07-05Google ScholarGoogle Scholar
  80. Nathalie F. Walker, Sabrina A. Patel, and Kemel A. B. Kalif. 2013. From Amazon Pasture to the High Street: Deforestation and the Brazilian Cattle Product Supply Chain. Tropical Conservation Science 6, 3 (Aug. 2013), 446–467. https://doi.org/10.1177/194008291300600309Google ScholarGoogle ScholarCross RefCross Ref
  81. David Wallace-Wells. 2019. We’re Getting a Clearer Picture of the Climate Future — and It’s Not as Bad as It Once Looked. Intelligencer (Dec. 2019).Google ScholarGoogle Scholar
  82. Michelle Westerlaken, Jennifer Gabrys, and Danilo Urzedo. 2022. Digital Gardening with a Forest Atlas: Designing a Pluralistic and Participatory Open-Data Platform. In Proceedings of the Participatory Design Conference 2022 - Volume 2(PDC ’22). Association for Computing Machinery, New York, NY, USA, 25–32. https://doi.org/10.1145/3537797.3537804Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Sven Willrich, Felix Melcher, and Christof Weinhardt. 2019. Rethinking Forest Management: A Participatory Blockchain-Based Governance Approach. In Proceedings of the 16th International Joint Conference on E-Business and Telecommunications, Prague, Czech Republic, 26th July - 28th July 2019. 145–152.Google ScholarGoogle ScholarCross RefCross Ref
  84. Sven Willrich, Tim Straub, and Christof Weinhardt. 2020. Blockchain-Based Governance for Social Welfare in the Forestry. In WI2020, Potsdam, 09.-11.03.2020 - Community Tracks. GITO Verlag, 269–274.Google ScholarGoogle Scholar
  85. Matt Ziegler, Michael Quinlan, Zage Strassberg-Phillips, Manasi Shah, Lauren Vreeken, Chris Jones, Karen Goodfellow, Jes Lefcout, Richard Anderson, and Kurtis Heimerl. 2021. “How’s Shelby the Turtle Today?” Strengths and Weaknesses of Interactive Animal-Tracking Maps for Environmental Communication. In ACM SIGCAS Conference on Computing and Sustainable Societies(COMPASS ’21). Association for Computing Machinery, New York, NY, USA, 349–363. https://doi.org/10.1145/3460112.3471967Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Adapting Forests to an Uncertain Climate: A Critical Technology Review

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        COMPASS '23: Proceedings of the 6th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies
        August 2023
        170 pages
        ISBN:9798400701498
        DOI:10.1145/3588001

        Copyright © 2023 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 16 August 2023

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate25of50submissions,50%
      • Article Metrics

        • Downloads (Last 12 months)85
        • Downloads (Last 6 weeks)9

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format