skip to main content
research-article

Making It Tractable to Catch Duplicates and Conflicts in Graphs

Published: 30 May 2023 Publication History

Abstract

This paper proposes an approach for entity resolution (ER) and conflict resolution (CR) in large-scale graphs. It is based on a class of Graph Cleaning Rules (GCRs), which support the primitives of relational data cleaning rules, and may embed machine learning classifiers as predicates. As opposed to previous graph rules, GCRs are defined with a dual graph pattern to accommodate irregular structures of schemaless graphs, and adopt patterns of a star form to reduce the complexity. We show that the satisfiability, implication and validation problems are all in polynomial time (PTIME) for GCRs, as opposed to the intractability of these classical problems for previous graph dependencies. We develop a parallel algorithm to discover GCRs by combining the generations of patterns and predicates, and a parallel PTIME algorithm for "deep" ER and CR by recursively applying the mined GCRs. We show that these algorithms guarantee to reduce runtime when more processors are used. Using real-life and synthetic graphs, we experimentally verify that rule discovery and error detection with GCRs are substantially faster than with previous graph dependencies, with improved accuracy.

Supplemental Material

MP4 File
Presentation video

References

[1]
2017. Wikidata Vandalism Dataset. https://www.wsdm-cup-2017.org/vandalism-detection.html.
[2]
2021. DBLP collaboration network. https://snap.stanford.edu/data/com-DBLP.html.
[3]
2021. IMDB. https://www.imdb.com/interfaces.
[4]
2022. DBpedia. http://www.dbpedia.org.
[5]
2022. WikiData. https://www.wikidata.org/.
[6]
Ziawasch Abedjan, Patrick Schulze, and Felix Naumann. 2014. DFD: Efficient Functional Dependency Discovery. In CIKM. 949--958.
[7]
João Paulo Aires and Felipe Meneguzzi. 2017. Norm Conflict Identification Using Deep Learning. In AAMAS Workshops. 194--207.
[8]
Waseem Akhtar, Alvaro Cortés-Calabuig, and Jan Paredaens. 2010. Constraints in RDF. In SDKB. 23--39.
[9]
Arvind Arasu, Michaela Götz, and Raghav Kaushik. 2010. On active learning of record matching packages. In SIGMOD. 783--794.
[10]
Arvind Arasu, Christopher Ré, and Dan Suciu. 2009. Large-Scale Deduplication with Constraints Using Dedupalog. In ICDE. 952--963.
[11]
Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query Answers in Inconsistent Databases. In PODS. 68--79.
[12]
Rayhana Baghli and Bruno Traverson. 2014. erbalization of Business Rules - Application to OCL Constraints in the Utility Domain. In MODELSWARD. 348--355.
[13]
Zeinab Bahmani, Leopoldo E. Bertossi, and Nikolaos Vasiloglou. 2017. ERBlox: Combining matching dependencies with machine learning for entity resolution. Int. J. Approx. Reasoning 83 (2017), 118--141.
[14]
Leopoldo Bertossi. 2011. Database Repairing and Consistent Query Answering. Morgan & Claypool Publishers.
[15]
Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. 2013. Data Cleaning and Query Answering with Matching Dependencies and Matching Functions. Theory Comput. Syst. 52, 3 (2013), 441--482.
[16]
Indrajit Bhattacharya and Lise Getoor. 2006. Entity Resolution in Graphs. Mining graph data (2006).
[17]
Indrajit Bhattacharya and Lise Getoor. 2007. Collective entity resolution in relational data. ACM Trans. Knowl. Discov. Data 1, 1 (2007), 5.
[18]
Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial Constraint Discovery with Hydra. Proc. VLDB Endow. 11, 3 (2017), 311--323.
[19]
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz, and Samy Bengio. 2016. Generating Sentences from a Continuous Space. In SIGNLL. 10--21.
[20]
Business of Data. 2021. How Graph Databases are Transforming Advanced Analytics. https://www.business-of-data.com/articles/graph-databases.
[21]
Karel Cemus and Tomas Cerny. 2017. Automated extraction of business documentation in enterprise information systems. ACM SIGAPP Applied Computing Review 16, 4 (2017), 5--13.
[22]
Lihan Chen, Sihang Jiang, Jingping Liu, Chao Wang, Sheng Zhang, Chenhao Xie, Jiaqing Liang, Yanghua Xiao, and Rui Song. 2022. Rule mining over knowledge graphs via reinforcement learning. Knowl. Based Syst. 242 (2022), 108371.
[23]
Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. 2016. Distributed Data Deduplication. Proc. VLDB Endow. 9, 11 (2016), 864--875.
[24]
Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints. Proc. VLDB Endow. 6, 13 (2013), 1498--1509.
[25]
Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving Data Quality: Consistency and Accuracy. In VLDB. 315--326.
[26]
Alvaro Cortés-Calabuig and Jan Paredaens. 2012. Semantics of Constraints in RDFS. In AMW. 75--90.
[27]
Sanjib Das, Paul Suganthan G. C., AnHai Doan, Jeffrey F. Naughton, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon Park. 2017. Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching to Build Cloud Services. In SIGMOD. 1431--1446.
[28]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL-HLT. 4171--4186.
[29]
Mohamad Dolatshah, Mathew Teoh, Jiannan Wang, and Jian Pei. 2018. Cleaning Crowdsourced Labels Using Oracles For Statistical Classification. Proc. VLDB Endow. 12, 4 (2018), 376--389.
[30]
Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity Resolution. Proc. VLDB Endow. 11, 11 (2018), 1454--1467.
[31]
Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis. 2014. GRAMI: Frequent Subgraph and Pattern Mining in a Single Large Graph. Proc. VLDB Endow. 7, 7 (2014), 517--528.
[32]
Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. 2015. Keys for Graphs. Proc. VLDB Endow. 8, 12 (2015), 1590--1601.
[33]
Wenfei Fan, Wenzhi Fu, Ruochun Jin, Ping Lu, and Chao Tian. 2022. Discovering Association Rules from Big Graphs. Proc. VLDB Endow. 15, 7 (2022), 1479--1492.
[34]
Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. 2011. Dynamic constraints for record matching. VLDB J. 20, 4 (2011), 495--520.
[35]
Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Conditional Functional Dependencies for Capturing Data Inconsistencies. ACM Trans. Database Syst. 33, 1 (2008), 6:1--6:48.
[36]
Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Discovering Conditional Functional Dependencies. IEEE Trans. Knowl. Data Eng. 23, 5 (2011), 683--698.
[37]
Wenfei Fan, Floris Geerts, Nan Tang, and Wenyuan Yu. 2014. Conflict resolution with data currency and consistency. ACM J. Data Inf. Qual. 5, 1--2 (2014), 6:1--6:37.
[38]
Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2020. Discovering Graph Functional Dependencies. ACM Trans. Database Syst. 45, 3 (2020), 15:1--15:42.
[39]
Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou. 2020. Capturing Associations in Graphs. Proc. VLDB Endow. 13, 11 (2020), 1863--1876.
[40]
Wenfei Fan, Ruochun Jin, Ping Lu, Chao Tian, and Ruiqi Xu. 2022. Towards Event Prediction in Temporal Graphs. Proc. VLDB Endow. 15, 9 (2022), 1861--1874.
[41]
Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. 2012. Towards certain fixes with editing rules and master data. VLDB J. 21, 2 (2012), 213--238.
[42]
Wenfei Fan, Xueli Liu, Ping Lu, and Chao Tian. 2020. Catching Numeric Inconsistencies in Graphs. ACM Trans. Database Syst. 45, 2 (2020), 9:1--9:47.
[43]
Wenfei Fan and Ping Lu. 2019. Dependencies for Graphs. ACM Trans. Database Syst. 44, 2 (2019), 5:1--5:40.
[44]
Wenfei Fan, Ping Lu, and Chao Tian. 2020. Unifying logic rules and machine learning for entity enhancing. Sci. China Inf. Sci. 63, 7 (2020).
[45]
Wenfei Fan, Ping Lu, Chao Tian, and Jingren Zhou. 2019. Deducing Certain Fixes to Graphs. Proc. VLDB Endow. 12, 7 (2019), 752--765.
[46]
Wenfei Fan, Chao Tian, Yanghao Wang, and Qiang Yin. 2021. Parallel Discrepancy Detection and Incremental Detection. Proc. VLDB Endow. 14, 8 (2021), 1351--1364.
[47]
Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional Dependencies for Graphs. In SIGMOD. 1843--1857.
[48]
Peter A Flach and Iztok Savnik. 1999. Database Dependency Discovery: A Machine Learning Approach. AI Commun. 12, 3 (1999), 139--160.
[49]
Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. 2013. AMIE: Association rule mining under incomplete evidence in ontological knowledge bases. In WWW. 413--422.
[50]
Kun Gao, Katsumi Inoue, Yongzhi Cao, and Hanpin Wang. 2022. Learning First-Order Rules with Differentiable Logic Program Semantics. In IJCAI. 3008--3014.
[51]
Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company.
[52]
Congcong Ge, Yunjun Gao, Honghui Weng, Chong Zhang, Xiaoye Miao, and Baihua Zheng. 2020. KGClean: An Embedding Powered Knowledge Graph Cleaning Framework. CoRR abs/2004.14478 (2020).
[53]
Liqiang Geng and Howard J. Hamilton. 2006. Interestingness measures for data mining: A survey. ACM Comput. Surv. 38, 3 (2006), 9.
[54]
Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008. On generating near-optimal tableaux for conditional functional dependencies. Proc. VLDB Endow. 1, 1 (2008), 376--390.
[55]
Songtao Guo, Xin Luna Dong, Divesh Srivastava, and Remi Zajac. 2010. Record Linkage with Uniqueness Constraints and Erroneous Values. Proc. VLDB Endow. 3, 1 (2010), 417--428.
[56]
Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. 2019. HoloDetect: Few-Shot Learning for Error Detection. In SIGMOD. 829--846.
[57]
Jelle Hellings, Marc Gyssens, Jan Paredaens, and Yuqing Wu. 2014. Implication and Axiomatization of Functional Constraints on Patterns with an Application to the RDF Data Model. In FoIKS. 250--269.
[58]
Jelle Hellings, Marc Gyssens, Jan Paredaens, and Yuqing Wu. 2016. Implication and axiomatization of functional and constant constraints. Ann. Math. Artif. Intell. 76, 3--4 (2016), 251--279.
[59]
Linus Hermansson, Tommi Kerola, Fredrik Johansson, Vinay Jethava, and Devdatt Dubhashi. 2013. Entity disambiguation in anonymized graphs using graph kernels. In CIKM. 1037--1046.
[60]
Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE: An Efficient Algorithm for Discovering Functional and Approximate Dependencies. Comput. J. 42, 2 (1999), 100--111.
[61]
Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun. 2022. Hands-On Bayesian Neural Networks - A Tutorial for Deep Learning Users. IEEE Comput. Intell. Mag. 17, 2 (2022), 29--48.
[62]
Angelika Kimmig, Bart Demoen, Luc De Raedt, Vítor Santos Costa, and Ricardo Rocha. 2011. On the implementation of the probabilistic logic programming language ProbLog. Theory Pract. Log. Program. 11, 2--3 (2011), 235--262.
[63]
Lars Kolb, Andreas Thor, and Erhard Rahm. 2012. Dedoop: Efficient Deduplication with Hadoop. Proc. VLDB Endow. 5, 12 (2012), 1878--1881.
[64]
Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity resolution approaches on real-world match problems. Proc. VLDB Endow. 3, 1 (2010), 484--493.
[65]
Clyde P Kruskal, Larry Rudolph, and Marc Snir. 1990. A Complexity Theory of Efficient Parallel Algorithms. Theor. Comput. Sci. 71, 1 (1990), 95--132.
[66]
Manuel Leone, Stefano Huber, Akhil Arora, Alberto García-Durán, and Robert West. 2022. A Critical Re-evaluation of Neural Methods for Entity Alignment. Proc. VLDB Endow. 15, 8 (2022), 1712--1725.
[67]
Bing Li, Wei Wang, Yifang Sun, Linhan Zhang, Muhammad Asif Ali, and Yi Wang. 2020. GraphER: Token-Centric Entity Resolution with Graph Convolutional Neural Networks. In AAAI. 8172--8179.
[68]
Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng Ji, Jonathan May, Nathanael Chambers, and Clare Voss. 2020. Connecting the Dots: Event Graph Schema Induction with Path Language Modeling. In EMNLP. 684--695.
[69]
Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2018. Multi-Hop Knowledge Graph Reasoning with Reward Shaping. In EMNLP. 3243--3253.
[70]
Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun, Siwei Rao, and Song Liu. 2015. Modeling Relation Paths for Representation Learning of Knowledge Bases. In EMNLP. 705--714.
[71]
Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. 2000. Efficient Discovery of Functional Dependencies and Armstrong Relations. In EDBT. 350--364.
[72]
Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A Configuration-Free Error Detection System. In SIGMOD. 865--882.
[73]
Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. Regularizing and Optimizing LSTM Language Models. In ICLR.
[74]
Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018. Deep Learning for Entity Matching: A Design Space Exploration. In SIGMOD. 19--34.
[75]
Mohammad Hossein Namaki, Yinghui Wu, Qi Song, Peng Lin, and Tingjian Ge. 2017. Discovering Graph Temporal Association Rules. In CIKM. 1697--1706.
[76]
Noel Novelli and Rosine Cicchetti. 2001. FUN: An Efficient Algorithm for Mining Functional and Embedded Dependencies. In ICDT. 189--203.
[77]
Daniel Obraczka, Jonathan Schuchart, and Erhard Rahm. 2021. EAGER: Embedding-Assisted Entity Resolution for Knowledge Graphs. CoRR abs/2101.06126 (2021).
[78]
Karolina Okrasa and Pawel Rzazewski. 2021. Fine-Grained Complexity of the Graph Homomorphism Problem for Bounded-Treewidth Graphs. SIAM J. Comput. 50, 2 (2021), 487--508.
[79]
Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. 2018. Robust Discovery of Positive and Negative Rules in Knowledge Bases. In ICDE. 1168--1179.
[80]
Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to Functional Dependency Discovery. In SIGMOD. 821--833.
[81]
Eduardo HM Pena, Eduardo C de Almeida, and Felix Naumann. 2019. Discovery of Approximate (and Exact) Denial Constraints. Proc. VLDB Endow. 13, 3 (2019), 266--278.
[82]
Kun Qian, Lucian Popa, and Prithviraj Sen. 2017. Active Learning for Large-Scale Entity Resolution. In CIKM. 1379--1388.
[83]
Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, and Jian Tang. 2021. RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs. In ICLR.
[84]
Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In EMNLP-IJCNLP. 3980--3990.
[85]
Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10, 11 (2017), 1190--1201.
[86]
Alieh Saeedi, Eric Peukert, and Erhard Rahm. 2018. Using Link Features for Entity Clustering in Knowledge Graphs. In ESWC. 576--592.
[87]
Philipp Schirmer, Thorsten Papenbrock, Ioannis Koumarelas, and Felix Naumann. 2020. Efficient Discovery of Matching Dependencies. ACM Trans. Database Syst. 45, 3 (2020), 1--33.
[88]
Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube. 2019. DynFD: Functional Dependency Discovery in Dynamic Datasets. In EDBT. 253--264.
[89]
Abraham Silberschatz and Alexander Tuzhilin. 1996. What Makes Patterns Interesting in Knowledge Discovery Systems. IEEE Trans. Knowl. Data Eng. 8, 6 (1996), 970--974.
[90]
Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel Madden, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. 2017. Synthesizing Entity Matching Rules by Examples. Proc. VLDB Endow. 11, 2 (2017), 189--202.
[91]
Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: A core of semantic knowledge. In WWW. 697--706.
[92]
Katia P. Sycara. 1993. Machine learning for intelligent support of conflict resolution. Decis. Support Syst. 10, 2 (1993), 121--136.
[93]
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks. In ICLR.
[94]
Yufei Tao. 2018. Massively Parallel Entity Matching with Linear Classification in Low Dimensional Space. In ICDT. 20:1--20:19.
[95]
Rakshit Trivedi, Bunyamin Sisman, Xin Luna Dong, Christos Faloutsos, Jun Ma, and Hongyuan Zha. 2018. LinkNBed: Multi-Graph Representation Learning with Entity Linkage. In ACL. 252--262.
[96]
Larysa Visengeriyeva and Ziawasch Abedjan. 2018. Metadata-driven error detection. In SSDBM. 1:1--1:12.
[97]
Steven Euijong Whang and Hector Garcia-Molina. 2013. Joint entity resolution on multiple datasets. VLDB J. 22, 6 (2013), 773--795.
[98]
Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. 2001. FastFDs: A Heuristic-Driven, Depth-First Algorithm for Mining Functional Dependencies from Relation Instances - Extended Abstract. In DaWak. 101--110.
[99]
H Yao, H Hamilton, and C Butz. 2002. FD_Mine: Discovering Functional Dependencies in a Database Using Equivalences. In ICDM. 1--15.
[100]
Xiangxiang Zeng, Xinqi Tu, Yuansheng Liu, Xiangzheng Fu, and Yansen Su. 2022. Toward better drug discovery with knowledge graph. Current opinion in structural biology 72 (2022), 114--126.
[101]
Baichuan Zhang and Mohammad Al Hasan. 2017. Name Disambiguation in Anonymized Graphs using Network Embedding. In CIKM. 1239--1248.
[102]
Dongxiang Zhang, Long Guo, Xiangnan He, Jie Shao, Sai Wu, and Heng Tao Shen. 2018. A Graph-Theoretic Fusion Framework for Unsupervised Entity Resolution. In ICDE. 713--724.
[103]
Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An End-to-End Deep Learning Architecture for Graph Classification. In AAAI. 4438--4445.
[104]
Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A Statistical Perspective on Discovering Functional Dependencies in Noisy Data. In SIGMOD. 861--876.

Cited By

View all
  • (2024)Graph Association Analyses for Early Drug DiscoveryProceedings of the VLDB Endowment10.14778/3685800.368585817:12(4293-4296)Online publication date: 8-Nov-2024
  • (2024)Capturing More Associations by Referencing External GraphsProceedings of the VLDB Endowment10.14778/3648160.364816217:6(1173-1186)Online publication date: 3-May-2024
  • (2024)Efficient Mixture of Experts based on Large Language Models for Low-Resource Data PreprocessingProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671873(3690-3701)Online publication date: 25-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the ACM on Management of Data
Proceedings of the ACM on Management of Data  Volume 1, Issue 1
PACMMOD
May 2023
2807 pages
EISSN:2836-6573
DOI:10.1145/3603164
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 May 2023
Published in PACMMOD Volume 1, Issue 1

Permissions

Request permissions for this article.

Author Tags

  1. conflict resolution
  2. entity resolution
  3. graph cleaning rules

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)117
  • Downloads (Last 6 weeks)5
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Graph Association Analyses for Early Drug DiscoveryProceedings of the VLDB Endowment10.14778/3685800.368585817:12(4293-4296)Online publication date: 8-Nov-2024
  • (2024)Capturing More Associations by Referencing External GraphsProceedings of the VLDB Endowment10.14778/3648160.364816217:6(1173-1186)Online publication date: 3-May-2024
  • (2024)Efficient Mixture of Experts based on Large Language Models for Low-Resource Data PreprocessingProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671873(3690-3701)Online publication date: 25-Aug-2024
  • (2024)Discovering Denial Constraints Based on Deep Reinforcement LearningProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679714(120-129)Online publication date: 21-Oct-2024

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media