skip to main content
10.1145/3589334.3645325acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

A Fast Hop-Biased Approximation Algorithm for the Quadratic Group Steiner Tree Problem

Published: 13 May 2024 Publication History

Abstract

Knowledge Graph (KG) exploration helps Web users understand the contents of a large and unfamiliar KG and extract relevant insights. The task has recently been formulated as a Quadratic Group Steiner Tree Problem (QGSTP) to search for a semantically cohesive subgraph connecting entities that match query keywords. However, on large graphs, existing algorithms for this NP-hard problem cannot meet the performance need. In this paper, we propose a novel approximation algorithm for QGSTP called HB. It finds and merges an optimal set of paths according to a Hop-Biased objective function, which not only leads to a guaranteed approximation ratio but is also decomposable by paths to enable efficient dynamic programming based search. Accompanied by a set of pruning heuristics, HB outperformed the state of the art by 1-2 orders of magnitude, empirically reducing the average time for answering a query on a million-scale graph from about one minute to one second.

Supplemental Material

MKV File
Supplemental video
MP4 File
presentation video

References

[1]
Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In SIGMOD '13. 349--360. https://doi.org/10.1145/2463676.2465315
[2]
C. Douglass Bateman, Christopher S. Helvig, Gabriel Robins, and Alexander Zelikovsky. 1997. Provably good routing tree construction with multi-port terminals. In ISPD '97. 96--102. https://doi.org/10.1145/267665.267697
[3]
Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S. Sudarshan. 2002. Keyword Searching and Browsing in Databases using BANKS. In ICDE '02. 431--440. https://doi.org/10.1109/ICDE.2002.994756
[4]
Gong Cheng and Evgeny Kharlamov. 2017. Towards a semantic keyword search over industrial knowledge graphs (extended abstract). In BigData '17. 1698--1700. https://doi.org/10.1109/BigData.2017.8258109
[5]
Gong Cheng, Shuxin Li, Ke Zhang, and Chengkai Li. 2020. Generating Compact and Relaxable Answers to Keyword Queries over Knowledge Graphs. In ISWC '20, Part I. 110--127. https://doi.org/10.1007/978--3-030--62419--4_7
[6]
Gong Cheng, Fei Shao, and Yuzhong Qu. 2017. An Empirical Evaluation of Techniques for Ranking Semantic Associations. IEEE Trans. Knowl. Data Eng., Vol. 29, 11, 2388--2401. https://doi.org/10.1109/TKDE.2017.2735970
[7]
Joel Coffman and Alfred C. Weaver. 2014. An Empirical Performance Evaluation of Relational Keyword Search Techniques. IEEE Transactions on Knowledge and Data Engineering, Vol. 26, 1 (2014), 30--42.
[8]
Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin. 2007. Finding Top-k Min-Cost Connected Trees in Databases. In ICDE '07. 836--845. https://doi.org/10.1109/ICDE.2007.367929
[9]
Eran Halperin and Robert Krauthgamer. 2003. Polylogarithmic inapproximability. In STOC '03. 585--594. https://doi.org/10.1145/780542.780628
[10]
Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisztian Balog, Svein Erik Bratsberg, Alexander Kotov, and Jamie Callan. 2017. DBpedia-Entity v2: A Test Collection for Entity Search. In SIGIR '17. 1265--1268. https://doi.org/10.1145/3077136.3080751
[11]
Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. 2007. BLINKS: ranked keyword searches on graphs. In SIGMOD '07. 305--316. https://doi.org/10.1145/1247480.1247516
[12]
Christopher S. Helvig, Gabriel Robins, and Alexander Zelikovsky. 2001. An improved approximation scheme for the Group Steiner Problem. Networks, Vol. 37, 1 (2001), 8--20.
[13]
Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutié rrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. 2021. Knowledge Graphs. ACM Comput. Surv., Vol. 54, 4 (2021), 71:1--71:37. https://doi.org/10.1145/3447772
[14]
Edmund Ihler. 1990. Bounds on the quality of approximate solutions to the Group Steiner Problem. In WG '90. 109--118. https://doi.org/10.1007/3--540--53832--1_36
[15]
Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi Desai, and Hrishikesh Karambelkar. 2005. Bidirectional Expansion For Keyword Search on Graph Databases. In VLDB '05. 505--516.
[16]
Mehdi Kargar and Aijun An. 2015. Finding top-k, r-cliques for keyword search from graphs in polynomial delay. Knowl. Inf. Syst., Vol. 43, 2 (2015), 249--280.
[17]
Philip N. Klein and R. Ravi. 1995. A Nearly Best-Possible Approximation Algorithm for Node-Weighted Steiner Trees. J. Algorithms, Vol. 19, 1 (1995), 104--115.
[18]
Wangchao Le, Feifei Li, Anastasios Kementsietsidis, and Songyun Duan. 2014. Scalable Keyword Search on Large RDF Data. IEEE Trans. Knowl. Data Eng., Vol. 26, 11 (2014), 2774--2788. https://doi.org/10.1109/TKDE.2014.2302294
[19]
Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2016. Efficient and Progressive Group Steiner Tree Search. In SIGMOD '16. 91--106. https://doi.org/10.1145/2882903.2915217
[20]
Matteo Lissandrini, Davide Mottin, Katja Hose, and Torben Bach Pedersen. 2022. Knowledge Graph Exploration Systems: are we lost?. In CIDR '22.
[21]
Matteo Lissandrini, Torben Bach Pedersen, Katja Hose, and Davide Mottin. 2020. Knowledge Graph Exploration: where are we and where are we going? ACM SIGWEB Newsl., Vol. 2020, Summer (2020), 4. https://doi.org/10.1145/3409481.3409485
[22]
Xiaolu Lu, Soumajit Pramanik, Rishiraj Saha Roy, Abdalghani Abujabal, Yafang Wang, and Gerhard Weikum. 2019. Answering Complex Questions by Joining Multi-Document Evidence with Quasi Knowledge Graphs. In SIGIR '19. 105--114. https://doi.org/10.1145/3331184.3331252
[23]
Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason Weston. 2016. Key-Value Memory Networks for Directly Reading Documents. In EMNLP '16. 1400--1409. https://doi.org/10.18653/v1/d16--1147
[24]
Mohammad Hossein Namaki, Yinghui Wu, and Xin Zhang. 2018. GExp: Cost-aware Graph Exploration with Keywords. In SIGMOD '18. 1729--1732. https://doi.org/10.1145/3183713.3193550
[25]
Petar Ristoski, Jessica Rosati, Tommaso Di Noia, Renato De Leone, and Heiko Paulheim. 2019. RDF2Vec: RDF graph embeddings and their applications. Semant. Web, Vol. 10, 4 (2019), 721--752. https://doi.org/10.3233/SW-180317
[26]
Yuxuan Shi, Gong Cheng, and Evgeny Kharlamov. 2020. Keyword Search over Knowledge Graphs via Static and Dynamic Hub Labelings. In WWW '20. 235--245. https://doi.org/10.1145/3366423.3380110
[27]
Yuxuan Shi, Gong Cheng, Trung-Kien Tran, Evgeny Kharlamov, and Yulin Shen. 2021a. Efficient Computation of Semantically Cohesive Subgraphs for Keyword-Based Knowledge Graph Exploration. In WWW '21. 1410--1421. https://doi.org/10.1145/3442381.3449900
[28]
Yuxuan Shi, Gong Cheng, Trung-Kien Tran, Jie Tang, and Evgeny Kharlamov. 2021b. Keyword-Based Knowledge Graph Exploration Based on Quadratic Group Steiner Trees. In IJCAI '21. 1555--1562. https://doi.org/10.24963/ijcai.2021/215
[29]
Yahui Sun, Xiaokui Xiao, Bin Cui, Saman K. Halgamuge, Theodoros Lappas, and Jun Luo. 2021. Finding Group Steiner Trees in Graphs with both Vertex and Edge Weights. Proc. VLDB Endow., Vol. 14, 7 (2021), 1137--1149.
[30]
Yueji Yang, Divyakant Agrawal, H. V. Jagadish, Anthony K. H. Tung, and Shuang Wu. 2019. An Efficient Parallel Keyword Search Engine on Knowledge Graphs. In ICDE '19. 338--349. https://doi.org/10.1109/ICDE.2019.00038
[31]
Hrag Yoghourdjian, Shady Elbassuoni, Mohamad Jaber, and Hiba Arnaout. 2017. Top-k Keyword Search over Wikipedia-based RDF Knowledge Graphs. In KDIR '17. 17--26. https://doi.org/10.5220/0006411400170026
[32]
Ke Zhang, Xiaoqing Wang, and Gong Cheng. 2023. Efficient Approximation Algorithms for the Diameter-Bounded Max-Coverage Group Steiner Tree Problem. In WWW '23. 199--209. https://doi.org/10.1145/3543507.3583257

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WWW '24: Proceedings of the ACM Web Conference 2024
May 2024
4826 pages
ISBN:9798400701719
DOI:10.1145/3589334
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 May 2024

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. approximation algorithm
  2. group Steiner tree
  3. knowledge graph

Qualifiers

  • Research-article

Funding Sources

Conference

WWW '24
Sponsor:
WWW '24: The ACM Web Conference 2024
May 13 - 17, 2024
Singapore, Singapore

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 203
    Total Downloads
  • Downloads (Last 12 months)203
  • Downloads (Last 6 weeks)27
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media