skip to main content
10.1145/3589737.3606001acmconferencesArticle/Chapter ViewAbstractPublication PagesiconsConference Proceedingsconference-collections
short-paper

Dendritic Computation for Neuromorphic Applications

Published:28 August 2023Publication History

ABSTRACT

In this paper, we highlight how computational properties of biological dendrites can be leveraged for neuromorphic applications. Specifically, we demonstrate analog silicon dendrites that support multiplication mediated by conductance-based input in an interception model inspired by the biological dragonfly. We also demonstrate spatiotemporal pattern recognition and direction selectivity using dendrites on the Loihi neuromorphic platform. These dendritic circuits can be assembled hierarchically as building blocks for classifying complex spatiotemporal patterns.

References

  1. Jyotibdha Acharya, Arindam Basu, Robert Legenstein, Thomas Limbacher, Panayiota Poirazi, and Xundong Wu. 2022. Dendritic computing: branching deeper into machine learning. Neuroscience 489 (2022), 275--289.Google ScholarGoogle ScholarCross RefCross Ref
  2. Kwabena Boahen. 2022. Dendrocentric learning for synthetic intelligence. Nature 612, 7938 (2022), 43--50.Google ScholarGoogle Scholar
  3. Frances S Chance. 2020. Interception from a Dragonfly Neural Network Model. In International Conference on Neuromorphic Systems 2020. ACM, 1--5.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Frances S Chance and Suma G Cardwell. 2023. Shunting Inhibition as a Neural-Inspired Mechanism for Multiplication in Neuromorphic Architectures. In Neuro-Inspired Computational Elements Conference. ACM, San Antonio, 41--46.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Spyridon Chavlis and Panayiota Poirazi. 2021. Drawing inspiration from biological dendrites to empower artificial neural networks. Current opinion in neurobiology 70 (2021), 1--10.Google ScholarGoogle Scholar
  6. Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning. Ieee Micro 38, 1 (2018), 82--99.Google ScholarGoogle ScholarCross RefCross Ref
  7. Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger, Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al. 2020. Event-based vision: A survey. IEEE transactions on pattern analysis and machine intelligence 44, 1 (2020), 154--180.Google ScholarGoogle Scholar
  8. Suma George, Jennifer Hasler, Scott Koziol, Stephen Nease, and Shubha Ramakrishnan. 2013. Low power dendritic computation for wordspotting. Journal of Low Power Electronics and Applications 3, 2 (2013), 73--98.Google ScholarGoogle ScholarCross RefCross Ref
  9. Suma George, Sihwan Kim, Sahil Shah, Jennifer Hasler, Michelle Collins, Farhan Adil, Richard Wunderlich, Stephen Nease, and Shubha Ramakrishnan. 2016. A programmable and configurable mixed-mode FPAA SoC. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 6 (2016), 2253--2261.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Lukas N Groschner, Jonatan G Malis, Birte Zuidinga, and Alexander Borst. 2022. A biophysical account of multiplication by a single neuron. Nature 603, 7899 (2022), 119--123.Google ScholarGoogle Scholar
  11. Abhiram Iyer, Karan Grewal, Akash Velu, Lucas Oliveira Souza, Jeremy Forest, and Subutai Ahmad. 2022. Avoiding catastrophe: Active dendrites enable multitask learning in dynamic environments. Frontiers in neurorobotics 16 (2022), 846219.Google ScholarGoogle Scholar
  12. Jakob Kaiser, Sebastian Billaudelle, Eric Müller, Christian Tetzlaff, Johannes Schemmel, and Sebastian Schmitt. 2022. Emulating dendritic computing paradigms on analog neuromorphic hardware. Neuroscience 489 (2022), 290--300.Google ScholarGoogle Scholar
  13. Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks 3361, 10 (1995), 1995.Google ScholarGoogle Scholar
  14. Xinyi Li, Jianshi Tang, Qingtian Zhang, Bin Gao, J Joshua Yang, Sen Song, Wei Wu, Wenqiang Zhang, Peng Yao, Ning Deng, et al. 2020. Power-efficient neural network with artificial dendrites. Nature Nanotechnology 15, 9 (2020), 776--782.Google ScholarGoogle ScholarCross RefCross Ref
  15. Michael London and Michael Häusser. 2005. Dendritic computation. Annu. Rev. Neurosci. 28 (2005), 503--532.Google ScholarGoogle ScholarCross RefCross Ref
  16. Jenny Lu, Amir H Behbahani, Lydia Hamburg, Elena A Westeinde, Paul M Dawson, Cheng Lyu, Gaby Maimon, Michael H Dickinson, Shaul Druckmann, and Rachel I Wilson. 2022. Transforming representations of movement from body-to world-centric space. Nature 601, 7891 (2022), 98--104.Google ScholarGoogle Scholar
  17. Cheng Lyu, LF Abbott, and Gaby Maimon. 2022. Building an allocentric travelling direction signal via vector computation. Nature 601, 7891 (2022), 92--97.Google ScholarGoogle Scholar
  18. Stephen Nease, Suma George, Paul Hasler, Scott Koziol, and Stephen Brink. 2011. Modeling and implementation of voltage-mode CMOS dendrites on a reconfigurable analog platform. IEEE transactions on biomedical circuits and systems 6, 1 (2011), 76--84.Google ScholarGoogle Scholar
  19. Shubha Ramakrishnan, Richard Wunderlich, Jennifer Hasler, and Suma George. 2013. Neuron array with plastic synapses and programmable dendrites. IEEE transactions on biomedical circuits and systems 7, 5 (2013), 631--642.Google ScholarGoogle ScholarCross RefCross Ref
  20. Frank Rosenblatt. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review 65, 6 (1958), 386.Google ScholarGoogle Scholar
  21. Arnob Saha, ANM Nafiul Islam, Zijian Zhao, Shan Deng, Kai Ni, and Abhronil Sengupta. 2021. Intrinsic synaptic plasticity of ferroelectric field effect transistors for online learning. Applied Physics Letters 119, 13 (2021), 133701.Google ScholarGoogle ScholarCross RefCross Ref
  22. Emilio Salinas and Larry F Abbott. 1995. Transfer of coded information from sensory to motor networks. Journal of Neuroscience 15, 10 (1995), 6461--6474.Google ScholarGoogle ScholarCross RefCross Ref
  23. Johannes Schemmel, Laura Kriener, Paul Müller, and Karlheinz Meier. 2017. An accelerated analog neuromorphic hardware system emulating NMDA-and calcium-based non-linear dendrites. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2217--2226.Google ScholarGoogle ScholarCross RefCross Ref
  24. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research 15, 1 (2014), 1929--1958.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Scott T Steinmetz, Oliver W Layton, Nathaniel V Powell, and Brett R Fajen. 2022. A dynamic efficient sensory encoding approach to adaptive tuning in neural models of optic flow processing. Frontiers in computational neuroscience 16 (2022), 844289.Google ScholarGoogle Scholar

Index Terms

  1. Dendritic Computation for Neuromorphic Applications

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Article Metrics

          • Downloads (Last 12 months)130
          • Downloads (Last 6 weeks)21

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader