skip to main content
10.1145/3591106.3592300acmconferencesArticle/Chapter ViewAbstractPublication PagesicmrConference Proceedingsconference-collections
keynote

Efficient CNNs and Transformers for Video Understanding and Image Synthesis

Authors Info & Claims
Published:12 June 2023Publication History

ABSTRACT

In this talk, I will first discuss approaches that reduce the GFLOPs during inference for 3D convolutional neural networks (CNN) and vision transformers. While state-of-the-art 3D CNNs and vision transformers achieve very good results on action recognition datasets, they are computationally very expensive and require many GFLOPs. While the GFLOPs of a 3D CNN or vision transformer can be decreased by reducing the temporal feature resolution or the number of tokens, there is no setting that is optimal for all input clips. I will therefore discuss two differentiable sampling approaches that can be plugged into any existing 3D CNN or vision transformer architecture. The sampling approaches adapt the computational resources to the input video such that as much resources as needed but not more than necessary are used to classify a video. The approaches substantially reduce the computational cost (GFLOPs) of state-of-the-art networks while preserving the accuracy. In the second part, I will discuss an approach that generates annotated training samples of very rare classes. It is based on a generative adversarial network (GAN) that jointly synthesizes images and the corresponding segmentation mask for each image. The generated data can then be used for one-shot video object segmentation.

Index Terms

  1. Efficient CNNs and Transformers for Video Understanding and Image Synthesis
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          ICMR '23: Proceedings of the 2023 ACM International Conference on Multimedia Retrieval
          June 2023
          694 pages
          ISBN:9798400701788
          DOI:10.1145/3591106

          Copyright © 2023 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 June 2023

          Check for updates

          Qualifiers

          • keynote
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate254of830submissions,31%

          Upcoming Conference

          ICMR '24
          International Conference on Multimedia Retrieval
          June 10 - 14, 2024
          Phuket , Thailand
        • Article Metrics

          • Downloads (Last 12 months)58
          • Downloads (Last 6 weeks)4

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format